Humans rapidly adapt reaching movements in response to perturbations (e.g., manipulations of movement dynamics or visual feedback). Following a break, when reexposed to the same perturbation, subjects demonstrate savings, a faster learning rate compared with the time course of initial training. Although this has been well studied, there are open questions on the extent early savings reflects the rapid recall of previous performance. To address this question, we examined how the properties of initial training (duration and final adaptive state) influence initial single-trial adaptation to force-field perturbations when training sessions were separated by 24 h. There were two main groups that were distinct based on the presence or absence of a washout period at the end of day 1 (with washout vs. without washout). We also varied the training duration on day 1 (15, 30, 90, or 160 training trials), resulting in 8 subgroups of subjects. We show that single-trial adaptation on day 2 scaled with training duration, even for similar asymptotic levels of learning on day 1 of training. Interestingly, the temporal force profile following the first perturbation on day 2 matched that at the end of day 1 for the longest training duration group that did not complete the washout. This correspondence persisted but was significantly lower for shorter training durations and the washout subject groups. Collectively, the results suggest that the adaptation observed very early in reexposure results from the rapid recall of the previously learned motor recalibration but is highly dependent on the initial training duration and final adaptive state. NEW & NOTEWORTHY The extent initial readaptation reflects the recall of previous motor performance is largely unknown. We examined early single-trial force-field adaptation on the second day of training and distinguished initial retention from recall. We found that the single-trial adaptation following the 24-h break matched that at the end of the first day, but this recall was modified by the training duration and final level of learning on the first day of training.
Delays in transmitting and processing sensory information require correctly associating delayed feedback to issued motor commands for accurate error compensation. The flexibility of this alignment between motor signals and feedback has been demonstrated for movement recalibration to visual manipulations, but the alignment dependence for adapting movement dynamics is largely unknown. Here we examined the effect of visual feedback manipulations on force-field adaptation. Three subject groups used a manipulandum while experiencing a lag in the corresponding cursor motion (0, 75, or 150 ms). When the offset was applied at the start of the session (continuous condition), adaptation was not significantly different between groups. However, these similarities may be due to acclimation to the offset before motor adaptation. We tested additional subjects who experienced the same delays concurrent with the introduction of the perturbation (abrupt condition). In this case adaptation was statistically indistinguishable from the continuous condition, indicating that acclimation to feedback delay was not a factor. In addition, end-point errors were not significantly different across the delay or onset conditions, but end-point correction (e.g., deceleration duration) was influenced by the temporal offset. As an additional control, we tested a group of subjects who performed without visual feedback and found comparable movement adaptation results. These results suggest that visual feedback manipulation (absence or temporal misalignment) does not affect adaptation to novel dynamics, independent of both acclimation and perceptual awareness. These findings could have implications for modeling how the motor system adjusts to errors despite concurrent delays in sensory feedback information. A temporal offset between movement and distorted visual feedback (e.g., visuomotor rotation) influences the subsequent motor recalibration, but the effects of this offset for altered movement dynamics are largely unknown. Here we examined the influence of ) delayed and) removed visual feedback on the adaptation to novel movement dynamics. These results contribute to understanding of the control strategies that compensate for movement errors when there is a temporal separation between motion state and sensory information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.