Recent spectroscopic and computational work on organic peroxy radicals, RO(2), is reviewed and extended with an emphasis on radicals where R is an alkyl group. Detailed experimental spectral, structural relationships are developed and show the dependence of spectral properties on the number of carbon atoms in the radical, and its isomeric and conformeric structure. These empirical relationships are explored and rationalized with the help of a series of quantum chemistry calculations, which are in turn benchmarked by the experimental data. The application of the spectra as a diagnostic for sensitive and selective measurement of radical concentrations for different RO(2) species in an isomer- and conformer-specific manner is described. Future areas of research including investigation of additional peroxy species and high resolution spectra of cold radicals are discussed.
Both stable conformers, trans (T) and gauche (G), of the ethyl peroxy radical and its perdeutero analogue have been observed via cavity ringdown spectroscopy (CRDS) of the A2A'-X2A' ' electronic transition in the near-IR. Assignments of specific spectral lines to the electronic transition origin (T00), to observed vibrational hot bands, and to the COO bend and the O-O stretch vibrations are given with the help of equation of motion (EOMIP) quantum chemical calculations. In particular, spectral information for the previously unknown/unassigned T conformer of ethyl peroxy is given in this study for the first time and compared to the data for the previously observed G conformer. The conformer assignment is confirmed by an analysis of the partially resolved rotational structures. The electronic origins for the T and G conformers of C2H5O2 are located at 7362(1) and 7592(1) cm-1, respectively.
We have recorded several rovibronic bands of CH3OO and CD3OO in their A<--X transitions in the range of 1.18-1.40 microm with the cavity ringdown technique. While the electronic origins for these species have been reported previously, many newly observed rovibronic bands are described here. The experimental vibrational frequencies (given as nu in the unit cm(-1) in this paper) for the COO bending (nu8) and COO symmetric stretching (nu7) modes in the A state are 378 and 887 cm(-1) for CH3OO, and 348 and 824 cm(-1) for CD3OO, respectively. In addition, two other vibrational frequencies were observed for the A state of CD3OO, namely, nu5 (954 cm(-1)) and nu6 (971 cm(-1)). These experimental vibrational frequencies for the A state of both CH3OO and CD3OO are in good agreement with predictions from quantum-chemical calculations at the UB3LYP/aug-cc-pVTZ level. The enhanced activity of the nu5 vibrational mode in CD3OO is rationalized by mode mixing with the nu7 mode, as supported by calculations of multidimensional Franck-Condon factors. In addition, many hot bands involving the methyl torsional mode (nu12) are observed for both normal and deuterated methyl peroxy. These bands include the "typical" sequence transitions and some "atypical" ones due to the nature of the eigenvalues and eigenfunctions which are a consequence of the low, but very different, torsional barriers in the X and A states. In addition, the 12(2)2 band in CH3OO and the 12(3)3 band in CD3OO show quite different structures than the origin bands, an effect which results from tunneling splittings comparable to the rotational contour.
Cavity ringdown spectra of the A-X electronic transition of all eight isomers of the pentyl peroxy radical are reported. Using the corresponding assignments from previously studied smaller alkyl peroxy radicals, assignments of origin bands are made for the pentyl peroxy isomers including some conformer-specific assignments for bands of a given isomer. Ab initio calculations also were performed to aid in the spectral assignments for neopentyl, t-butyl, and t-pentyl peroxies. In addition to the origins, vibrational bands have also been assigned for some species. Using the analyzed spectra, the relative reactivity of the primary, secondary, and tertiary hydrogen atoms in isopentane could be determined semiquantitatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.