Biological invasions by nonnative species are a by-product of economic activities, with the vast majority of nonnative species introduced by trade and transport of products and people. Although most introduced species are relatively innocuous, a few species ultimately cause irreversible economic and ecological impacts, such as the chestnut blight that functionally eradicated the American chestnut across eastern North America. Assessments of the economic costs and losses induced by nonnative forest pests are required for policy development and need to adequately account for all of the economic impacts induced by rare, highly damaging pests. To date, countrywide economic evaluations of forest-invasive species have proceeded by multiplying a unit value (price) by a physical quantity (volume of forest products damaged) to arrive at aggregate estimates of economic impacts. This approach is inadequate for policy development because (1) it ignores the dynamic impacts of biological invasions on the evolution of prices, quantities, and market behavior, and (2) it fails to account for the loss in the economic value of nonmarket ecosystem services, such as landscape aesthetics, outdoor recreation, and the knowledge that healthy forest ecosystems exist. A review of the literature leads one to anticipate that the greatest economic impacts of invasive species in forests are due to the loss of nonmarket values. We proposed that new methods for evaluating aggregate economic damages from forest-invasive species need to be developed that quantify market and nonmarket impacts at microscales that are then extended using spatially explicit models to provide aggregate estimates of impacts. Finally, policies that shift the burden of economic impacts from taxpayers and forest landowners onto parties responsible for introducing or spreading invasives, whether through the imposition of tariffs on products suspected of imposing unacceptable risks on native forest ecosystems or by requiring standards on the processing of trade products before they cross international boundaries, may be most effective at reducing their impacts.
Reducing emissions from deforestation and forest degradation (REDD+) has gained international attention over the past decade, as manifested in both United Nations policy discussions and hundreds of voluntary projects launched to earn carbon-offset credits. There are ongoing discussions about whether and how projects should be integrated into national climate change mitigation efforts under the Paris Agreement. One consideration is whether these projects have generated additional impacts over and above national policies and other measures. To help inform these discussions, we compare the crediting baselines established ex-ante by voluntary REDD+ projects in the Brazilian Amazon to counterfactuals constructed ex-post based on the quasi-experimental synthetic control method. We find that the crediting baselines assume consistently higher deforestation than counterfactual forest loss in synthetic control sites. This gap is partially due to decreased deforestation in the Brazilian Amazon during the early implementation phase of the REDD+ projects considered here. This suggests that forest carbon finance must strike a balance between controlling conservation investment risk and ensuring the environmental integrity of carbon emission offsets. Relatedly, our results point to the need to better align project- and national-level carbon accounting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.