A rising epistemological paradigm in the cognitive sciences-embodied cognition-has been stimulating innovative approaches, among educational researchers, to the design and analysis of STEM teaching and learning. The paradigm promotes theorizations of cognitive activity as grounded, or even constituted, in goal-oriented multimodal sensorimotor phenomenology. Conceptual learning, per these theories, could emanate from, or be triggered by, experiences of enacting or witnessing particular movement forms, even before these movements are explicitly signified as illustrating target content. Putting these theories to practice, new types of learning environments are being explored that utilize interactive technologies to initially foster student enactment of conceptually oriented movement forms and only then formalize these gestures and actions in disciplinary formats and language. In turn, new research instruments, such as multimodal learning analytics, now enable researchers to aggregate, integrate, model, and represent students' physical movements, eye-gaze paths, and verbal-gestural utterance so as to track and evaluate emerging conceptual capacity. We-a cohort of cognitive scientists and design-based researchers of embodied mathematics-survey a set of empirically validated frameworks and principles for enhancing mathematics teaching and learning as dialogic multimodal activity, and we synthetize a set of principles for educational practice.
How do people stretch their understanding of magnitude from the experiential range to the very large quantities and ranges important in science, geopolitics, and mathematics? This paper empirically evaluates how and whether people make use of numerical categories when estimating relative magnitudes of numbers across many orders of magnitude. We hypothesize that people use scale words-thousand, million, billion-to carve the large number line into categories, stretching linear responses across items within each category. If so, discontinuities in position and response time are expected near the boundaries between categories. In contrast to previous work (Landy, Silbert, & Goldin, 2013) that suggested only that a minority of college undergraduates employed categorical boundaries, we find that discontinuities near category boundaries occur in most or all participants, but that accurate and inaccurate participants respond in opposite ways to category boundaries. Accurate participants highlight contrasts within a category, whereas inaccurate participants adjust their responses toward category centers.
Formal mathematical reasoning provides an illuminating test case for understanding how humans can think about things that they did not evolve to comprehend. People engage in algebraic reasoning by (1) creating new assemblies of perception and action routines that evolved originally for other purposes (reuse), (2) adapting those routines to better fit the formal requirements of mathematics (adaptation), and (3) designing cultural tools that mesh well with our perception-action routines to create cognitive systems capable of mathematical reasoning (invention). We describe evidence that a major component of proficiency at algebraic reasoning is Rigged Up Perception-Action Systems (RUPAS), via which originally demanding, strategically controlled cognitive tasks are converted into learned, automatically executed perception and action routines. Informed by RUPAS, we have designed, implemented, and partially assessed a computer-based algebra tutoring system called Graspable Math with an aim toward training learners to develop perception-action routines that are intuitive, efficient, and mathematically valid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.