Increases in cardiovascular load (pressure overload) are known to elicit ventricular remodeling including cardiomyocyte hypertrophy and interstitial fibrosis. While numerous studies have focused on the mechanisms of myocyte hypertrophy, comparatively little is known regarding the response of the interstitial fibroblasts to increased cardiovascular load. Fibroblasts are the most numerous cell type in the mammalian myocardium and have long been recognized as producing the majority of the myocardial extracellular matrix. It is only now becoming appreciated that other aspects of fibroblast behavior are important to overall cardiac function. The present studies were performed to examine the temporal alterations in fibroblast activity in response to increased cardiovascular load. Rat myocardial fibroblasts were isolated at specific time-points (3, 7, 14, and 28 days) after induction of pressure overload by abdominal aortic constriction. Bioassays were performed to measure specific parameters of fibroblast function including remodeling and contraction of 3-dimensional collagen gels, migration, and proliferation. In addition, the expression of extracellular matrix receptors of the integrin family was examined. Myocardial hypertrophy and fibrosis were evident within 7 days after constriction of the abdominal aorta. Collagen gel contraction, migration, and proliferation were enhanced in fibroblasts from pressure-overloaded animals compared to fibroblasts from sham animals. Differences in fibroblast function and protein expression were evident within 7 days of aortic constriction, concurrent with the onset of hypertrophy and fibrosis of the intact myocardium. These data provide further support for the idea that rapid and dynamic changes in fibroblast phenotype accompany and contribute to the progression of cardiovascular disease.
Exposure of fibroblasts to high glucose levels promotes a fibrotic response characterized by increased expression of extracellular matrix components including interstitial collagens. Little is known about the effects of glucose levels on other aspects of fibroblast function. Fibroblasts in the myocardium are surrounded by an extensive extracellular matrix composed predominantly of type I collagen. Interactions between fibroblasts and the myocardial extracellular matrix are thought to affect heart function by altering ventricular diastolic properties. The purpose of the present study was to determine the effects of elevated glucose levels on the interactions between heart fibroblasts and the collagenous extracellular matrix. Studies were performed to determine the effects of relative glucose levels on the ability of fibroblasts to migrate on and contract a three-dimensional collagenous substratum. These experiments illustrated that exposure of cardiac fibroblasts to high glucose levels (25 mM) resulted in decreased migratory activity of fibroblasts on a collagen matrix and decreased fibroblast proliferation. In addition, high glucose stimulated collagen and collagen-binding integrin expression and contraction of three-dimensional collagen gels by cardiac fibroblasts. These studies illustrate that altered glucose levels induce important changes in the interactions of cardiac fibroblasts with the collagenous extracellular matrix.
A large proportion of congenital heart defects result from dysmorphogenesis of valvuloseptal precursors, the endocardial cushions. Intrinsic to formation and maturation of these tissues are developmental changes in cell-cell and cell-extracellular matrix interactions. Interactions between cells and the extracellular matrix play critical roles in modulating cellular processes including proliferation, migration, differentiation and even survival. While significant progress is being made in the elucidation of the cellular events involved in valvuloseptal development, little is known regarding how environmental factors may affect this process. Embryonic exposure to the herbicide nitrofen has been shown to result in congenital heart defects associated with altered endocardial cushion formation or maturation. The present studies were performed to begin to address the cellular mechanisms of these nitrofen-induced effects. Heart fibroblasts were isolated and treated with varying doses of nitrofen in vitro. Experiments were performed to determine the effects of this herbicide on important cellular processes including migration, proliferation and apoptosis. These studies illustrated a dose-dependent decrease in collagen gel contraction and proliferation in response to nitrofen. Assays were also performed to determine the effects of nitrofen on fibroblast gene expression. Increased expression of collagen type I and specific integrins were seen following nitrofen exposure. These studies illustrate that nitrofen has direct effects on cardiac fibroblast proliferation and extracellular matrix remodeling, cellular events important in valvuloseptal development.
IntroductionRac-GTPases and their Rac-GEF activators play important roles in neutrophil-mediated host defence. These proteins control the adhesion molecules and cytoskeletal dynamics required for neutrophil recruitment to inflamed and infected organs, and the neutrophil effector responses that kill pathogens.MethodsHere, we used live cell TIRF-FRET imaging in neutrophils from Rac-FRET reporter mice with deficiencies in the Rac-GEFs Dock2, Tiam1 or Prex1/Vav1 to evaluate if these proteins activate spatiotemporally distinct pools of Rac, and to correlate patterns of Rac activity with the neutrophil responses they control.ResultsAll the GEFs were required for neutrophil adhesion, and Prex1/Vav1 were important during spreading and for the velocity of migration during chemotaxis. However, Dock2 emerged as the prominent regulator of neutrophil responses, as this GEF was required for neutrophil polarisation and random migration, for migration velocity during chemokinesis, for the likelihood to migrate and for the speed of migration and of turning during chemotaxis, as well as for rapid particle engulfment during phagocytosis. We identified characteristic spatiotemporal patterns of Rac activity generated by Dock2 which correlate with the importance of the Rac-GEF in these neutrophil responses. We also demonstrate a requirement for Dock2 in neutrophil recruitment during aseptic peritonitis.DiscussionCollectively, our data provide a first direct comparison of the pools of Rac activity generated by different types of Rac-GEFs, and identify Dock2 as a key regulator of polarisation, migration and phagocytosis in primary neutrophils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.