Data integration is a statistical modeling approach that incorporates multiple data sources within a unified analytical framework. Macrosystems ecology-the study of ecological phenomena at broad scales, including interactions across scales-increasingly employs data integration techniques to expand the spatiotemporal scope of research and inferences, increase the precision of parameter estimates, and account for multiple sources of uncertainty in estimates of multiscale processes. We highlight four common analytical challenges to data integration in macrosystems ecology research: data scale mismatches, unbalanced data, sampling biases, and model development and assessment. We explain each problem, discuss current approaches to address the issue, and describe potential areas of research to overcome these hurdles. Use of data integration techniques has increased rapidly in recent years, and given the inferential value of such approaches, we expect continued development and wider application across ecological disciplines, especially in macrosystems ecology.
Effective conservation requires strategies to monitor populations efficiently, which can be especially difficult for rare or elusive species where field surveys require high effort and considerable cost. Populations of many reptiles, including Sonoran desert tortoises (Gopherus agassizii), are challenging to monitor effectively because they are cryptic, they occur at low densities, and their activity is limited both seasonally and daily. We compared efficiency and statistical power of 2 survey methods appropriate for tortoises and other rare vertebrates, linetransect distance sampling and site occupancy. In 2005 and 2006 combined, we surveyed 120 1-km transects to estimate density and 40 3-ha plots 5 times each to estimate occupancy of Sonoran desert tortoises in 2 mountain ranges in southern Arizona, USA. For both mountain ranges combined, we estimated density to be 0.30 adult tortoises/ha (95% CI 5 0.17-0.43) and occupancy to be 0.72 (95% CI 5 0.56-0.89). For the sampling designs we evaluated, monitoring efforts based on occupancy were 8-36% more efficient than those based on density, when contrasting only survey effort, and 17-30% more efficient when contrasting total effort (surveying, hiking to and from survey locations, and radiotracking). Occupancy had greater statistical power to detect annual declines in the proportion of area occupied than did distance sampling to detect annual declines in density. For example, we estimated that power to detect a 5% annual decline with 10 years of annual sampling was 0.92 (95% CI 5 0.75-0.98) for occupancy and 0.43 (95% CI 5 0.35-0.52) for distance sampling. Although all sampling methods have limitations, occupancy estimation offers a promising alternative for monitoring populations of rare vertebrates, including tortoises in the Sonoran Desert.
Although many species may be vulnerable to changes in climate, forecasting species-level responses can be challenging given the array of physiological, behavioral, and demographic attributes that might be affected. One strategy to improve forecasts is to evaluate how species responded to climatic variation in the past. We used 22 years of capture-recapture data for Sonoran desert tortoises (Gopherus morafkai) collected from 15 locations across their geographic range in Arizona to evaluate how environmental factors affected spatial and temporal variation in survival. Although rates of annual survival were generally high ([Formula: see text] = 0.92), survival of adults decreased with drought severity, especially in portions of their range that were most arid and nearest to cities. In three locations where large numbers of carcasses from marked tortoises were recovered, survival of adults was markedly lower during periods of severe drought ([Formula: see text] = 0.77-0.81) compared to all other periods ([Formula: see text] = 0.93-0.98). Assuming continued levels of dependency of humans on fossil fuels, survival of adult tortoises is predicted to decrease by an average of 3 % during 2035-2060 relative to survival during 1987-2008 in 14 of the 15 populations we studied. This decrease could reduce persistence of tortoise populations, especially in arid portions of their range. Temporal and spatial variation in drought conditions are important determinants of survival in adult desert tortoises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.