Lack of resources and exposure to neuroscience in K-12 education has resulted in a limited number of K-12 students pursuing higher education in the field. Meanwhile, the rapid expansion of the field of neuroscience has encouraged many higher educational institutes to offer neuroscience majors. This has opened up the opportunity to engage faculty, as well as graduate and undergraduate students in bringing the most needed knowledge and awareness about neuroscience into K-12 classrooms.However, undergraduate neuroscience curricula have limited formal opportunities to engage in outreach, and few existing programs have assessments to determine their effectiveness. To address these needs, we developed quantitative assessment tools that complement an existing neuroscience outreach program-Project Brainstormat the University of California, Los Angeles (UCLA). 29 UCLA undergraduates enrolled in the 2016 and 2017 programs participated in this study, along with 298 K-12 students from local schools across the Los Angeles area. In undergraduate students, we assessed (a) improvement in students' teaching/communication abilities across the course of the outreach program, and (b) confidence in explaining neuroscience topics and interest in pursuing teaching career. In K-12 students, we evaluated (a) knowledge gain in neuroscience topics and (b) interest in pursuing higher education.Overall, Project Brainstorm showed significant improvement in all the
Numerous online resources provide a variety of content for a wide range of STEM topics; however, they tend to function as isolated tidbits that provide content-specific knowledge. Application-based science education videosaddress the overlooked issue of concept to application by implementing experimental components in their videos and fostering connections with everyday applications. We utilized the Journal of Visualized Experiments (JoVE) peer-reviewed science education videos as homework assignments to supplement lectures on the topics of enthalpy, entropy, rate laws, and Le Châtelier’s principle in a second-term general chemistry course. Student learning was assessed through the analysis of pre- and post-video conceptual quizzes, and value surveys were also conducted to gather student feedback about the videos. Our investigation shows that using these videos in the course significantly improved student learning and reinforced conceptual understanding for important foundational concepts, and these results hold even for students who did not feel positively toward the videos.
Taking multiple-choice practice tests with competitive incorrect alternatives can enhance performance on related but different questions appearing on a later cued-recall test (Little et al., Psychol Sci 23:1337–1344, 2012). This benefit of multiple-choice testing, which does not occur when the practice test is a cued-recall test, appears attributable to participants attempting to retrieve not only why the correct alternative is correct but also why the other alternatives are incorrect. The present research was designed to examine whether a confidence-weighted multiple-choice format in which test-takers were allowed to indicate their relative confidence in the correctness of one alternative compared with the others (Bruno, J Econ Educ 20:5–22, 1989; Bruno, Item banking: Interactive testing and self-assessment: Volume 112 of NATO ASI Series, pp. 190–209, 1993) might increase the extent to which participants engaged in such productive retrievals. In two experiments, such confidence-weighted practice tests led to greater benefits in the ability of test-takers to answer new but related questions than did standard multiple-choice practice tests. These results point to ways to make multiple-choice testing a more powerful tool for learning.
This article assesses outcomes among students who pursued faculty-mentored research in those fields and concurrently participated in programs administered through UCLA’s Undergraduate Research Center for the Humanities, Arts, and Social Sciences. Compared to a quasi-control group of nonresearch students, the research students reported statistically significant better outcomes on average in attaining several of the skills sought by today’s employers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.