BackgroundJapanese encephalitis (JE) is a zoonosis in Southeast Asia vectored by mosquitoes infected with the Japanese encephalitis virus (JEV). Japanese encephalitis is considered an emerging exotic infectious disease with potential for introduction in currently JEV-free countries. Pigs and ardeid birds are reservoir hosts and play a major role on the transmission dynamics of the disease. The objective of the study was to quantitatively summarize the proportion of JEV infection in vectors and vertebrate hosts from data pertaining to observational studies obtained in a systematic review of the literature on vector and host competence for JEV, using meta-analyses.MethodsData gathered in this study pertained to three outcomes: proportion of JEV infection in vectors, proportion of JEV infection in vertebrate hosts, and minimum infection rate (MIR) in vectors. Random-effects subgroup meta-analysis models were fitted by species (mosquito or vertebrate host species) to estimate pooled summary measures, as well as to compute the variance between studies. Meta-regression models were fitted to assess the association between different predictors and the outcomes of interest and to identify sources of heterogeneity among studies. Predictors included in all models were mosquito/vertebrate host species, diagnostic methods, mosquito capture methods, season, country/region, age category, and number of mosquitos per pool.ResultsMosquito species, diagnostic method, country, and capture method represented important sources of heterogeneity associated with the proportion of JEV infection; host species and region were considered sources of heterogeneity associated with the proportion of JEV infection in hosts; and diagnostic and mosquito capture methods were deemed important contributors of heterogeneity for the MIR outcome.ConclusionsOur findings provide reference pooled summary estimates of vector competence for JEV for some mosquito species, as well as of sources of variability for these outcomes. Moreover, this work provides useful guidelines when interpreting vector and host infection proportions or prevalence from observational studies, and contributes to further our understanding of vector and vertebrate host competence for JEV, elucidating information on the relative importance of vectors and hosts on JEV introduction and transmission.Electronic supplementary materialThe online version of this article (10.1186/s13071-017-2354-7) contains supplementary material, which is available to authorized users.
The objective of this work was to summarize and quantify Japanese encephalitis virus (JEV) infection, dissemination, and transmission rates in mosquitoes, using a meta-analysis approach. Data were obtained from experimental studies, gathered by means of a systematic review of the literature. Random-effects subgroup meta-analysis models by mosquito species were fitted to estimate pooled estimates and to calculate the variance between studies for three outcomes of interest: JEV infection, dissemination, and transmission rates in mosquitoes. To identify sources of heterogeneity among studies and to assess the association between different predictors (mosquito species, virus administration route, incubation period, and diagnostic method) with the outcome JEV infection rate in vectors, we fitted univariable meta-regression models. Mosquito species and administration route represented the main sources of heterogeneity associated with JEV infection rate in vectors. This study provided summary effect size estimates to be used as reference for other investigators when assessing transmission efficiency of vectors and explored sources of variability for JEV infection rates in vectors. Because transmission efficiency, as part of vector competence assessment, is an important parameter when studying the relative contribution of vectors to JEV transmission, our findings contribute to further our knowledge, potentially moving us toward more informed and targeted actions to prevent and control JEV in both affected and susceptible regions worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.