Background: The treatment of schizophrenia is challenging due to the wide range of symptoms (positive, negative, cognitive) associated with the disease. Typical antipsychotics that antagonize D2 receptors are effective in treating positive symptoms, but extrapyramidal side-effects (EPS) are a common occurrence. Atypical antipsychotics targeting 5-HT2A and D2 receptors are more effective at treating cogni-tive and negative symptoms compared to typical antipsychotics, but these drugs also result in side-effects such as metabolic syndromes.Objective: To identify evidence in the literature that elucidates the pharmacological profile of aripiprazole.Methods: We searched PubMed for peer reviewed articles on aripiprazole and its clinical efficacy, side-effects, pharmacolo-gy, and effects in animal models of schizophrenia symptoms.Results: Aripiprazole is a newer atypical antipsychotic that displays a unique pharmacological profile, including partial D2 agonism and functionally selective properties. Aripiprazole is effective at treating the positive symptoms of schizophrenia and has the potential to treat negative and cognitive symptoms at least as well as other atypical antipsychotics. The drug has a favorable side-effect profile and has a low propensity to result in EPS or metabolic syndromes. Animal models of schizophrenia have been used to determine the efficacy of aripiprazole in symptom management. In these instanc-es, aripiprazole resulted in the reversal of deficits in extinction, pre-pulse inhibition, and social withdrawal. Because aripipra-zole requires a greater than 90% occupancy rate at D2 receptors to be clinically active and does not produce EPS, this suggests a functionally selective effect on intracel-lular signaling pathways.Conclusion: A combination of factors such as dopamine system stabilization via partial agonism, functional selectivity at D2 receptors, and serotonin-dopamine system interaction may contribute to the ability of aripiprazole to successfully manage schizophrenia symptoms. This review examines these mechanisms of action to further clarify the pharmacological actions of aripiprazole.
The noncompetitive NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5-10-imine maleate (MK-801) has been shown to increase the probability of operant responding during extinction and reduce infralimbic prefrontal cortical activation, possibly modeling the cognitive dysfunction symptomology, and underlying cause, in patients with schizophrenia. The present study sought to determine if typical and/or atypical antipsychotics would attenuate the MK-801-induced behavioral perseveration and whether this would be associated with concomitant changes in phosphorylated ERK1/2 (pERK1/2) labeling in the infralimbic cortex (IL). Male, Long Evans rats were pretreated with the typical antipsychotic, Flupenthixol (0, 0.125, 0.25 or 0.5 mg/kg) or the atypical antipsychotic, aripiprazole (0, 0.3, 1.0, 3.0 mg/kg), then given 0.1 mg/kg MK-801 followed by a 60-min appetitive operant extinction session. Flupenthixol produced a dose-dependent decrease in MK-801-induced bar pressing behavior and locomotor activity and a dose-dependent increase in IL pERK1/2 labeling. Aripiprazole produced a U-shaped dose-response curve on MK-801-induced bar pressing behavior, a dose-dependent decrease in locomotor activity but no changes in IL pERK1/2 labeling. The attenuation of the MK-801-induced behavioral (bar pressing, locomotion) profile by Flupenthixol indicates a clear dopaminergic contribution to this behavior. The behavioral effect of aripiprazole may be due to its a) binding to presynaptic dopamine receptors at the midrange dose decreasing dopamine output and b) binding to postsynaptic dopamine receptors at the higher dose increasing dopamine tone. While both classes of antipsychotics can normalize perseverative behavioral symptoms, the underlying prefrontal cortical dysregulation seems to persist.
Seasonal fluctuations in food availability show a tight association with seasonal variations in body weight and food intake. Seasonal variations in food intake, energy storage, and expenditure appear to be a widespread phenomenon suggesting they may have evolved in anticipation for changing environmental demands. These cycles appear to be driven by changes in external daylength acting on neuroendocrine pathways. A number of neuroendocrine pathways, two of which are the endocrine mechanisms underlying feeding and stress, appear to show seasonal changes in both their circulating levels and reactivity. As such, variation in the level or reactivity to these hormones may be crucial factors in the control of seasonal variations in food-seeking behaviors. The present review examines the relationship between feeding behavior and seasonal changes in circulating hormones. We hypothesize that seasonal changes in circulating levels of glucocorticoids and the feeding-related hormones ghrelin and leptin contribute to seasonal fluctuations in feeding-related behaviors. This review will focus on the seasonal circulating levels of these hormones as well as sensitivity to these hormones in the modulation of food-seeking behaviors.
Mounting evidence demonstrates that paternal diet programs offspring metabolism. However, the contribution of a pre‐conception paternal high protein (HP) diet to offspring metabolism, gut microbiota, and epigenetic changes remains unclear. Here we show that paternal HP intake in Sprague Dawley rats programs protective metabolic outcomes in offspring. Compared to paternal high fat/sucrose (HF/S), HP diet improved body composition and insulin sensitivity and improved circulating satiety hormones and cecal short‐chain fatty acids compared to HF/S and control diet (P < .05). Further, using 16S rRNA gene sequencing to assess gut microbial composition, we observed increased alpha diversity, distinct bacterial clustering, and increased abundance of Bifidobacterium, Akkermansia, Bacteroides, and Marvinbryantia in HP fathers and/or male and female adult offspring. At the epigenetic level, DNMT1and 3b expression was altered intergenerationally. Our study identifies paternal HP diet as a modulator of gut microbial composition, epigenetic markers, and metabolic function intergenerationally.
ScopeAntibiotics in early life disrupt microbiota and increase obesity risk. Dietary agents such as prebiotics may reduce obesity risk. The authors examine how antibiotics administered with/without prebiotic oligofructose, alter metabolic and microbial outcomes in pregnant rats and their offspring.Methods and ResultsPregnant rats are randomized to: 1) Control, 2) Antibiotic (ABT), 3) Prebiotic (PRE), 4) Antibiotic+Prebiotic (ABT+PRE) during the 3rd week of pregnancy and lactation. Offspring were fed a high fat/high sucrose (HFS) diet from 9–17 weeks of age to unmask obesity risk. ABT dams had higher body weight, body fat and leptin during lactation than all other groups. Prebiotics attenuate these outcomes and increase cecal Bifidobacterium. ABT offspring have higher body weight, fat mass, and liver triglycerides after HFS diet, with a stronger phenotype in males; prebiotics attenuate these. At weaning, male ABT offspring have lower Lactobacillus while PRE and ABT+PRE offspring had higher Bifidobacterium and Collinsella. Fecal microbiota transfer of adult offspring cecal matter could not reliably transfer the obese ABT phenotype.ConclusionsAntibiotic use during pregnancy/lactation increases adiposity and impairs post‐partum weight loss in dams. Co‐administering prebiotics with antibiotics in rat dams prevented obesity risk in offspring and is associated with altered gut microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.