Effects of ranolazine alone and in the presence of phenylephrine (PE) or isoproterenol (ISO) on hemodynamics, coronary blood flow (CBF) and heart rate (HR) in the absence and presence of hexamethonium (a ganglionic blocker) were studied in conscious dogs. Ranolazine (0.4, 1.2, 3.6 and 6 mg/kg, IV) alone caused transient (<1 min) and reversible hemodynamic changes. PE (0.3 to 10 μg/kg) caused a dose-dependent increase in BP and decrease in HR. ISO (0.01 to 0.3 μg/kg) caused a dose-dependent decrease in BP and increase in HR. Ranolazine at moderate (4-5 μM) and high (11-13 μM) concentrations did not affect the changes in MAP and HR caused by either PE or ISO, or partially attenuated these effects, respectively. However, in dogs treated with hexamethonium (20 mg/kg) to cause autonomic blockade, ranolazine (both 4-5 and 11-13 μM) significantly attenuated both the PE- and ISO-induced changes in MAP. The results suggest that a potential anti-adrenergic effect of ranolazine was masked by autonomic control mechanisms in conscious dogs, but could be observed when these mechanisms were inhibited (e.g., in the hexamethonium-treated dog). Ranolazine, at plasma concentrations below 10 μM and in conscious dogs with intact autonomic regulation, had minimal anti-adrenergic (α and β) effects.
Background-Hyperhomocysteinemia (HHcy) is a reliable indicator of cardiovascular disease, in part because of the production of superoxide and scavenging of nitric oxide (NO). The present study assessed the impact of HHcy on the NO-dependent control of cardiac O 2 consumption and examined enzymatic sources of superoxide. Methods and Results-Rats and mice were fed methionine in drinking water for 5 to 9 weeks to increase plasma homocysteine, a process that did not cause significant changes in hemodynamic function. The ability of the NO agonists bradykinin and carbachol to reduce myocardial O 2 consumption in vitro was impaired by Ϸ40% in methionine-fed rats, and this impairment was proportional to their individual plasma homocysteine concentration. However, responses were restored in the presence of ascorbic acid, tempol, and apocynin, which inhibits NADPH oxidase assembly. Western blots showed no difference in Cu/Zn or Mn superoxide dismutase, endothelial NO synthase, or inducible NO synthase protein, but HHcy caused a 100% increase in the p22 phox subunit of NADPH oxidase. Western blots with plasma membrane-enriched fractions of cell lysate detected elevated levels of p22 phox , p67 phox , and rac-1, which indicates increased oxidase assembly. Finally, mice lacking a functional gp91phox subunit of NADPH oxidase demonstrated normal NO-dependent regulation of myocardial O 2 consumption after methionine feeding. Conclusions-In
Our objective was to investigate the potential role of selective endothelial nitric oxide (NO) synthase (eNOS) overexpression in coronary blood vessels in the control of myocardial oxygen consumption (MVO2). Transgenic (Tg) eNOS-overexpressing mice (eNOS Tg) (n=22) and wild-type (WT) mice (n=24) were studied. Western blot analysis indicated greater than sixfold increase of eNOS in cardiac tissue. Echocardiography in awake mice indicated no difference in cardiac function between WT and eNOS Tg; however, systolic pressure in eNOS Tg mice decreased significantly (126 +/- 2.3 to 109 +/- 2.3 mmHg; P <0.05), whereas heart rate (HR) was not different. Total peripheral resistance (TPR) was also decreased (9.8 +/- 0.8 to 7.6 +/- 0.4 4 mmHg.ml(-1).min; P <0.05) in eNOS Tg. Furthermore, female eNOS Tg mice showed even lower TPR (7.2 +/- 0.4 mmHg.ml(-1).min) compared with male eNOS mice (8.6 +/- 0.5, mmHg.ml.min(-1); P <0.05). Left ventricular slices were isolated from WT and eNOS Tg mice. With the use of a Clark-type oxygen electrode in an airtight bath, MVO2 was determined as the percent decrease during increasing doses (10(-10) to 10(-4) mol/l) of bradykinin (BK), carbachol (CCh), forskolin (10(-12) to 10(-6) mol/l), or S-nitroso-N-acetyl penicillamine (SNAP; 10(-7) to 10(-4) mol/l). Baseline MVO2 was not different between WT (181 +/- 13 nmol.g(-1).min(-1)) and eNOS Tg (188 +/- 14 nmol.g(-1).min(-1)). BK decreased MVO2 (10(-4) mol/l) in WT by 17% +/- 1.1 and 33% +/- 2.7 in eNOS Tg (P < 0.05). CCh also decreased MVO2, 10(-4) mol/l, in WT by 20% +/- 1.7 and 31% +/- 2.0 in eNOS Tg (P <0.05). Forskolin (10(-6) mol/l) or SNAP (10(-4) mol/l) also decreased MVO2 in WT by 24% +/- 2.8 and 36% +/- 1.8 versus eNOS 31% +/- 1.8 and 37% +/- 3.5, respectively. N-nitro-L-arginine methyl ester (10(-3) mol/l) inhibited the MVO2 reduction to BK, CCh, and forskolin by a similar degree (P <0.05), but not to SNAP. Thus selective overexpression of eNOS in cardiac blood vessels in mice enhances the control of MVO2 by eNOS-derived NO.
We have previously reported that ANG II stimulation increased superoxide anion (O2-) through the activation of NAD(P)H oxidase and inhibited nitric oxide (NO)-dependent control of myocardial oxygen consumption (MVo2) by scavenging NO. Our objective was to investigate the role of NAD(P)H oxidase, especially the gp91phox subunit, in the NO-dependent control of MVo2. MVo2 in mice with defects in the expression of gp91phox [gp91(phox)(-/-)] was measured with a Clark-type oxygen electrode. Baseline MVo2 was not significantly different between wild-type (WT) and gp91(phox)(-/-) mice. Stimulation of NO production by bradykinin (BK) induced significant decreases in MVo2 in WT mice. BK-induced reduction in MVo2 was enhanced in gp91(phox)(-/-) mice. BK-induced reduction in MVo2 in WT mice was attenuated by 10(-8) mol/l ANG II, which was restored by coincubation with Tiron or apocynin. In contrast to WT mice, BK-induced reduction in MVo2 in gp91(phox)(-/-) mice was not altered by ANG II. There was a decrease in lucigenin (5 x 10(-6) mol/l)-detectable O2- in gp91(phox)(-/-) mice compared with WT mice. ANG II resulted in significant increases in O2- production in WT mice, which was inhibited by coincubation with Tiron or apocynin. However, ANG II had no effect on O2- production in gp91(phox)(-/-) mice. Histological examination showed that the development of abscesses and/or the invasion of inflammatory cells occurred in lungs and livers but not in hearts and kidneys from gp91(phox)(-/-) mice. These results indicate that the gp91(phox) subunit of NAD(P)H oxidase mediates O2- production through the activation of NAD(P)H oxidase and attenuation of NO-dependent control of MVo2 by ANG II.
Background: Venous thromboembolism (VTE) is a major health problem and common cause of morbidity and mortality in hospitalized patients. While trials in both surgical and medically ill patients have demonstrated efficacy and safety of enoxaparin for VTE prophylaxis (VTEP), they failed to adequately represent morbidly obese (body mass index > 40 kg/m 2) patients. Objective: To assess the impact of a weight-adjusted enoxaparin dosing algorithm on anti-factor Xa levels, thrombosis, and bleeding in morbidly obese patients. Methods: A retrospective chart review was conducted, which included morbidly obese patients receiving VTEP with adjusted-dose enoxaparin. Patients received enoxaparin 0.5 mg/kg subcutaneously once or twice daily based on VTE risk. An anti-factor Xa level was drawn 3 to 5 hours after 2 or more consecutive doses. The primary outcome was the percentage of patients achieving target anti-factor Xa levels, defined as 0.2 to 0.6 IU/mL. Secondary outcomes included the incidence of symptomatic VTE and major bleeding. Results: Of the 182 charts reviewed, 141 anti-factor Xa levels from 130 patients met inclusion criteria. The study population was 44% male, and the median body mass index was 45.6 kg/m 2. A total of 120 anti-factor Xa levels (85.1%) were within the target prophylactic range. Sixteen anti-factor Xa levels (11.3%) were below target range, and 5 (3.4%) were above range. The only significant difference among the 3 groups was baseline renal function (P = .035). There were 2 thromboembolic events and 1 major bleed in the study population. Conclusion: A weight-based VTEP dosing strategy for morbidly obese patients is effective without an apparent increase in adverse events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.