Recommender systems are software tools used to generate and provide suggestions for items and other entities to the users by exploiting various strategies. Hybrid recommender systems combine two or more recommendation strategies in different ways to benefit from their complementary advantages. This systematic literature review presents the state of the art in hybrid recommender systems of the last decade. It is the first quantitative review work completely focused in hybrid recommenders. We address the most relevant problems considered and present the associated data mining and recommendation techniques used to overcome them. We also explore the hybridization classes each hybrid recommender belongs to, the application domains, the evaluation process and proposed future research directions. Based on our findings, most of the studies combine collaborative filtering with another technique often in a weighted way. Also cold-start and data sparsity are the two traditional and top problems being addressed in 23 and 22 studies each, while movies and movie datasets are still widely used by most of the authors. As most of the studies are evaluated by comparisons with similar methods using accuracy metrics, providing more credible and user oriented evaluations remains a typical challenge. Besides this, newer challenges were also identified such as responding to the variation of user context, evolving user tastes or providing cross-domain recommendations. Being a hot topic, hybrid recommenders represent a good basis with which to respond accordingly by exploring newer opportunities such as contextualizing recommendations, involving parallel hybrid algorithms, processing larger datasets, etc.
Driving and music listening are two inseparable everyday activities for millions of people today in the world. Considering the high correlation between music, mood and driving comfort and safety, it makes sense to use appropriate and intelligent music recommendations based on the mood of drivers and songs in the context of car driving. The objective of this paper is to present the project of a contextual moodbased music recommender system capable of regulating the driver's mood and trying to have a positive influence on her driving behaviour. Here we present the proof of concept of the system and describe the techniques and technologies that are part of it. Further possible future improvements on each of the building blocks are also presented.
Extractive keyphrase generation research has been around since the nineties, but the more advanced abstractive approach based on the encoder-decoder framework and sequenceto-sequence learning has been explored only recently. In fact, more than a dozen of abstractive methods have been proposed in the last three years, producing meaningful keyphrases and achieving state-of-the-art scores. In this survey, we examine various aspects of the extractive keyphrase generation methods and focus mostly on the more recent abstractive methods that are based on neural networks. We pay particular attention to the mechanisms that have driven the perfection of the later. A huge collection of scientific article metadata and the corresponding keyphrases is created and released for the research community. We also present various keyphrase generation and text summarization research patterns and trends of the last two decades.
The fabulous results of Deep Convolution Neural Networks in computer vision and image analysis have recently attracted considerable attention from researchers of other application domains as well. In this paper we present NgramCNN, a neural network architecture we designed for sentiment analysis of long text documents. It uses pretrained word embeddings for dense feature representation and a very simple single-layer classifier. The complexity is encapsulated in feature extraction and selection parts that benefit from the effectiveness of convolution and pooling layers. For evaluation we utilized different kinds of emotional text datasets and achieved an accuracy of 91.2 % accuracy on the popular IMDB movie reviews. NgramCNN is more accurate than similar shallow convolution networks or deeper recurrent networks that were used as baselines. In the future, we intent to generalize the architecture for state of the art results in sentiment analysis of variable-length texts. CCS Concepts • Computing methodologies ➝ Artificial intelligence ➝ Natural language processing • Applied Computing ➝ Document management and text processing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.