BackgroundResistance to pyrethroid insecticides involving kdr mutations is widespread in Aedes aegypti (L.) (Diptera: Culicidae) and potentially could impact control efforts in endemic countries. Dengue cases had been sporadic in Burkina Faso for over a decade prior to the 2016–2017 outbreak that resulted in 15,074 suspected cases and 36 deaths, mainly in Ouagadougou. These outbreaks highlighted the lack of information on numerous aspects of the biology, behaviour and insecticide status of local dengue vector populations that are fundamental to vector control.ResultsWe investigated the insecticide resistance profiles and the kdr mutations involved in pyrethroid resistance of Ae. aegypti from Somgandé, a district of Ouagadougou. WHO bioassays revealed that the local Ae. aegypti populations were highly resistant to pyrethroids with mortalities of 15% for permethrin and 37% for deltamethrin. Resistance to carbamates was also detected with mortalities of 55% for propoxur and 90% for bendiocarb, but high mortalities (> 97%) to organophosphates (malathion and fenitrothion) indicated susceptibility. Allele-specific PCR and voltage-gated sodium channel gene sequencing showed a very high frequency (97%) of the F1534C kdr allele whilst the V1016I kdr mutation frequency was 46%. Association of dual-locus kdr mutations was detected for permethrin resistance.ConclusionWe conclude that in this locality of Burkina Faso, Ae. aegypti is resistant to pyrethroid and carbamate insecticides but remains susceptible to organophosphates, providing useful information for possible future control.
We analyzed blood samples of resident and migratory Japanese birds to evaluate the prevalence and genetic background of avian blood parasites in northern Japan. We used PCR targeting the mitochondrial cytochrome b gene to examine infections of Leucocytozoon, Haemoproteus, and Plasmodium parasites in blood samples from 243 birds of 14 species in three orders (Passeriformes, Columbiformes, and Anseriformes). Sequences were subjected to phylogenetic analysis. The infection rate was 21% in pigeons (Columbiformes) and 17% in Anseriformes. A high infection rate of 93.8% was found in crow species (Passeriformes). Haemoproteus and Plasmodium parasites were detected in only two species. Infected blood samples obtained from seven bird species involved two major clades of Leucocytozoon, which were divided between resident and migratory birds. The parasites, which are genetically distinct from parasites in Japanese resident birds, may have been introduced to Japan by migratory bird species.
BackgroundMalaria is the most significant human parasitic disease, and yet understanding of the energy metabolism of the principle pathogen, Plasmodium falciparum, remains to be fully elucidated. Amino acids were shown to be essential nutritional requirements since early times and much of the current knowledge of Plasmodium energy metabolism is based on early biochemical work, performed using basic analytical techniques, carried out almost exclusively on human plasma with considerable inter-individual variability.MethodsIn order to further characterize the fate of amino acid metabolism in malaria parasite, multivariate analysis using statistical modelling of amino acid concentrations (aminogram) of plasma and liver were determined in host infected with rodent malaria parasite, Plasmodium yoelii.Results and conclusionComprehensive and statistical aminogram analysis revealed that P. yoelii infection caused drastic change of plasma and liver aminogram, and altered intra- and inter-correlation of amino acid concentration in plasma and liver. These findings of the interactions between amino acids and Plasmodium infection may provide insight to reveal the interaction between nutrients and parasites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.