Azithromycin (AZ) is a broad-spectrum macrolide antibiotic with a long half-life and a large volume of distribution. It is primarily used for the treatment of respiratory, enteric, and genitourinary bacterial infections. AZ is not approved for the treatment of viral infections, and there is no well-controlled, prospective, randomized clinical evidence to support AZ therapy in coronavirus disease 2019 . Nevertheless, there are anecdotal reports that some hospitals have begun to include AZ in combination with hydroxychloroquine or chloroquine (CQ) for treatment of COVID-19. It is essential that the clinical pharmacology (CP) characteristics of AZ be considered in planning and conducting clinical trials of AZ alone or in combination with other agents, to ensure safe study conduct and to increase the probability of achieving definitive answers regarding efficacy of AZ in the treatment of COVID-19. The safety profile of AZ used as an antibacterial agent is well established. 1 This work assesses published in vitro and clinical evidence for AZ as an agent with antiviral properties. It also provides basic CP information relevant for planning and initiating COVID-19 clinical studies with AZ, summarizes safety data from healthy volunteer studies, and safety and efficacy data from phase II and phase II/III studies in patients with uncomplicated malaria, including a phase II/III study in pediatric patients following administration of AZ and CQ in combination. This paper may also serve to facilitate the consideration and use of a priori-defined control groups for future research.
The interfacial dilational viscoelastic properties of hydrophobically associating block copolymer composed of acrylamide (AM) and a low amount of 2-phenoxylethyl acrylate (POEA) (<1.0 mol %) at the octane-water interfaces were investigated by means of two methods: the interfacial tension response to sinusoidal area variations and the relaxation of an applied stress. The dependencies of interfacial dilational modulus and phase angle on the polymer concentration were explored. The influence of sodium dodecyl sulfate (SDS) on the dilational viscoelastic properties of polymer solutions was studied. The results obtained by oscillating barriers method showed that the dilational modulus passed through a maximum value with increasing polymer concentration, while the phase angle decreased with increasing concentration below 200 ppm, then showed very low concentration dependence up to 3000 ppm, and increased dramatically above it. When SDS was added to the aqueous phase, the dilational modulus passed through a maximum with increasing SDS concentration, while the change of phase angle depended on the polymer bulk concentration. The results obtained by the relaxation of an applied stress show that two main relaxation processes exist in the interface at low bulk concentration below the critical aggregation concentration: one is the fast process involving the exchange of hydrophobic microdomains between the proximal region and distal region in the interface with a characteristic time value from several tens of seconds to several seconds at different bulk concentration; the other is the slow relaxation process involving conformational changes of polymer chain in the interface with characteristic time value from 1000 s to several tens of seconds, depending on the bulk concentration. However, there is only one main relaxation process controlling the dilational properties above c*: a fast relaxation process with the characteristic relaxation time of less than 1 s, which is believed to be related to the associations formed by hydrophobic microdomains. Anionic surfactant SDS can influence the dilational properties of polymer solutions by the following ways: first, SDS can absorb onto the interface and bind to the hydrophobic microdomains to change the characteristic times and contributions of the existed relaxation processes of polymer chains; second, SDS can provide a new fast relaxation process involving the exchange of SDS molecules between monomers and mixed micelles in interface. The information on relaxation processes obtained from interfacial tension relaxation measurements can explain the results from dilational viscoelasticity measurements very well. The negative phase angles have been obtained in some case. It is believed that the in-interface slow relaxation process, which sometimes dominates the dilational viscoelasticity of polymer film, is responsible for this phenomenon in our employed experimental method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.