The thermoelastic wave propagation in a tetragonal syngony anisotropic medium of classes 4, 4/m having heterogeneity along z axis has been investigated by employing matrizant method. This medium has an axis of second-order symmetry parallel to z axis. In the case of the fourth-order matrix coefficients, the problems of wave refraction and reflection on the interface of homogeneous anisotropic thermoelastic mediums are solved analytically.
The investigation of wave propagation in elastic medium with thermomechanical effects is bound to have important economic implications in the field of composite materials, seismology, geophysics, and so on. In this article, thermoelastic wave propagation in anisotropic mediums of orthorhombic and hexagonal syngony having heterogeneity along -axis is studied. Such medium has second-order axis symmetry. By using analytical matriciant method, a set of equations of motions in thermoelastic medium are reduced to an equivalent set of the first-order differential equations. In the general case, for the given set of equations, structures of fundamental solutions are made and dispersion relations are obtained.
Thermoelasticity is a generalization of classical theories of elasticity and thermal conductivity and describes a wide range of phenomenon. The theory can precisely predict the propagation of thermoelastics waves in case of an isotropic medium. However, the propagation of thermoelastic waves in the anisotropic medium is not fully understood. In this case, the theory of elasticity employs an approximate theory of temperature stress which does not take into consideration the interactions of temperature and deformations. In this paper, an analytical study has been carried out by using method of matricant to investigate the propagation of longitudinal elastic and heat waves in the anisotropic medium of a monoclinic, trigonal, hexagonal, and cubical crystal systems. In this article, a solution to the problem of the propagation of thermal waves and the propagation of a thermal wave along
z
-axis has been obtained. The attenuation coefficient and phase velocity of thermal waves for various materials are determined. Specifically, the problem of propagation of heat waves in one dimension has been solved.
This paper considers a new method based on the law of energy conservation for the study of thermo-stress-strain state of a rod of limited length with simultaneous presence of local heat fluxes, heat exchanges, and thermal insulation. The method allows determining the field of temperature distribution and the three components of deformations and stresses, as well as the magnitude of the rod elongation and the resulting axial force with an accuracy of satisfying the energy conservation laws. For specific initial data, all the sought-for ones are determined numerically with high accuracy. We found that all solutions satisfy the laws of energy conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.