Aberrant ErbB2 receptor tyrosine kinase activation in breast cancer is strongly linked to an invasive disease. The molecular basis of ErbB2-driven invasion is largely unknown. We show that cysteine cathepsins B and L are elevated in ErbB2 positive primary human breast cancer and function as effectors of ErbB2-induced invasion in vitro. We identify Cdc42-binding protein kinase beta, extracellular regulated kinase 2, p21-activated protein kinase 4, and protein kinase C alpha as essential mediators of ErbB2-induced cysteine cathepsin expression and breast cancer cell invasiveness. The identified signaling network activates the transcription of cathepsin B gene (CTSB) via myeloid zinc finger-1 transcription factor that binds to an ErbB2-responsive enhancer element in the first intron of CTSB. This work provides a model system for ErbB2-induced breast cancer cell invasiveness, reveals a signaling network that is crucial for invasion in vitro, and defines a specific role and targets for the identified serine-threonine kinases.
BackgroundCoordinated efforts to collect large-scale data sets provide a basis for systems level understanding of complex diseases. In order to translate these fragmented and heterogeneous data sets into knowledge and medical benefits, advanced computational methods for data analysis, integration and visualization are needed.MethodsWe introduce a novel data integration framework, Anduril, for translating fragmented large-scale data into testable predictions. The Anduril framework allows rapid integration of heterogeneous data with state-of-the-art computational methods and existing knowledge in bio-databases. Anduril automatically generates thorough summary reports and a website that shows the most relevant features of each gene at a glance, allows sorting of data based on different parameters, and provides direct links to more detailed data on genes, transcripts or genomic regions. Anduril is open-source; all methods and documentation are freely available.ResultsWe have integrated multidimensional molecular and clinical data from 338 subjects having glioblastoma multiforme, one of the deadliest and most poorly understood cancers, using Anduril. The central objective of our approach is to identify genetic loci and genes that have significant survival effect. Our results suggest several novel genetic alterations linked to glioblastoma multiforme progression and, more specifically, reveal Moesin as a novel glioblastoma multiforme-associated gene that has a strong survival effect and whose depletion in vitro significantly inhibited cell proliferation. All analysis results are available as a comprehensive website.ConclusionsOur results demonstrate that integrated analysis and visualization of multidimensional and heterogeneous data by Anduril enables drawing conclusions on functional consequences of large-scale molecular data. Many of the identified genetic loci and genes having significant survival effect have not been reported earlier in the context of glioblastoma multiforme. Thus, in addition to generally applicable novel methodology, our results provide several glioblastoma multiforme candidate genes for further studies.Anduril is available at http://csbi.ltdk.helsinki.fi/anduril/The glioblastoma multiforme analysis results are available at http://csbi.ltdk.helsinki.fi/anduril/tcga-gbm/
Aims/hypothesis We aimed to identify a sparse panel of biomarkers for improving the prediction of renal disease progression in type 1 diabetes. Methods We considered 859 individuals recruited from the Scottish Diabetes Research Network Type 1 Bioresource (SDRNT1BIO) and 315 individuals from the Finnish Diabetic Nephropathy (FinnDiane) study. All had an entry eGFR between 30 and 75 ml min −1 [1.73 m] −2 , with those from FinnDiane being oversampled for albuminuria. A total of 297 circulating biomarkers (30 proteins, 121 metabolites, 146 tryptic peptides) were measured in non-fasting serum samples using the Luminex platform and LC electrospray tandem MS (LC-MS/MS). We investigated associations with final eGFR adjusted for baseline eGFR and with rapid progression (a loss of more than 3 ml min −1 [1.73 m] −2 year −1 ) using linear and logistic regression models. Panels of biomarkers were identified using a penalised Bayesian approach, and their performance was evaluated through 10-fold cross-validation and compared with using clinical record data alone. Results For final eGFR, 16 proteins and 30 metabolites or tryptic peptides showed significant association in SDRNT1BIO, and nine proteins and five metabolites or tryptic peptides in FinnDiane, beyond age, sex, diabetes duration, study day eGFR and length of follow-up (all at p < 10 −4 ). The strongest associations were with CD27 antigen (CD27), kidney injury molecule 1 (KIM-1) and α1-microglobulin. Including the Luminex biomarkers on top of baseline covariates increased the r 2 for prediction of final eGFR from 0.47 to 0.58 in SDRNT1BIO and from 0.33 to 0.48 in FinnDiane. At least 75% of the increment in r 2 was attributable to CD27 and KIM-1. However, using the weighted average of historical eGFR gave similar performance to biomarkers. The LC-MS/MS platform performed less well. Conclusions/interpretation Among a large set of associated biomarkers, a sparse panel of just CD27 and KIM-1 contains most of the predictive information for eGFR progression. The increment in prediction beyond clinical data was modest but potentially useful for oversampling individuals with rapid disease progression into clinical trials, especially where there is little information on prior eGFR trajectories. Electronic supplementary material The online version of this article (10.1007/s00125-019-4915-0) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.