Myosins form a large superfamily of molecular motors that move along actin filaments. The functions of myosins in plant cells are thought to be related to various processes: cell division, movement of mitochondria and chloroplasts, cytoplasmic streaming, rearrangement of transvacuolar strands, and statolith positioning. Class VIII and XI myosins are represented in the Arabidopsis thaliana genome by 4 and 13 potential genes, respectively. The roles of individual class XI myosins and their cellular targets in A. thaliana are still unclear. In this work we implemented a reverse genetic approach to analyse the loss-of-function mutants of XIK, a representative of class XI myosins in A. thaliana. Three different T-DNA insertion mutants in the myosin XIK gene showed similar phenotypes: impaired growth of root hair cells, twisted shape of stem trichomes, and irregular size, branch positioning, and branch expansion of leaf trichomes. Morphometric analysis of mutant seedlings showed that the average length of root hairs was reduced up to 50% in comparison with wild-type root hairs, suggesting an involvement of the class XI myosin XIK in tip growth. On leaves, the proportion of trichomes with short branches was doubleed in mutant plants, and the mutant trichomes possessed a mildly twisted shape. Therefore, we concluded that myosin XIK is involved also in the elongation of stalks and branches of trichomes.
The genus Sobemovirus, unassigned to any family, consists of viruses with single-stranded plus-oriented single-component RNA genomes and small icosahedral particles. Currently, 14 species within the genus have been recognized by the International Committee on Taxonomy of Viruses (ICTV) but several new species are to be recognized in the near future. Sobemovirus genomes are compact with a conserved structure of open reading frames and with short untranslated regions. Several sobemoviruses are important pathogens. Moreover, over the last decade sobemoviruses have become important model systems to study plant virus evolution. In the current review we give an overview of the structure and expression of sobemovirus genomes, processing and functions of individual proteins, particle structure, pathology and phylogenesis of sobemoviruses as well as of satellite RNAs present together with these viruses. Based on a phylogenetic analysis we propose that a new family Sobemoviridae should be recognized including the genera Sobemovirus and Polemovirus. Finally, we outline the future perspectives and needs for the research focusing on sobemoviruses.
BackgroundThe positioning and dynamics of vesicles and organelles, and thus the growth of plant cells, is mediated by the acto-myosin system. In Arabidopsis there are 13 class XI myosins which mediate vesicle and organelle transport in different cell types. So far the involvement of five class XI myosins in cell expansion during the shoot and root development has been shown, three of which, XI-1, XI-2, and XI-K, are essential for organelle transport.ResultsSimultaneous depletion of Arabidopsis class XI myosins XI-K, XI-1, and XI-2 in double and triple mutant plants affected the growth of several types of epidermal cells. The size and shape of trichomes, leaf pavement cells and the elongation of the stigmatic papillae of double and triple mutant plants were affected to different extent. Reduced cell size led to significant size reduction of shoot organs in the case of triple mutant, affecting bolt formation, flowering time and fertility. Phenotype analysis revealed that the reduced fertility of triple mutant plants was caused by delayed or insufficient development of pistils.ConclusionsWe conclude that the class XI myosins XI-K, XI-1 and XI-2 have partially redundant roles in the growth of shoot epidermis. Myosin XI-K plays more important role whereas myosins XI-1 and XI-2 have minor roles in the determination of size and shape of epidermal cells, because the absence of these two myosins is compensated by XI-K. Co-operation between myosins XI-K and XI-2 appears to play an important role in these processes.
RNA silencing suppressor genes derived from six virus genera were transformed into Nicotiana benthamiana and N. tabacum plants. These suppressors were P1 of Rice yellow mottle virus (RYMV), P1 of Cocksfoot mottle virus, P19 of Tomato bushy stunt virus, P25 of Potato virus X, HcPro of Potato virus Y (strain N), 2b of Cucumber mosaic virus (strain Kin), and AC2 of African cassava mosaic virus (ACMV). HcPro caused the most severe phenotypes in both Nicotiana spp. AC2 also produced severe effects in N. tabacum but a much milder phenotype in N. benthamiana, although both HcPro and AC2 affected the leaf tissues of the two Nicotiana spp. in similar ways, causing hyperplasia and hypoplasia, respectively. P1-RYMV caused high lethality in the N. benthamiana plants but only mild effects in the N. tabacum plants. Phenotypic alterations produced by the other transgenes were minor in both species. Interestingly, the suppressors had very different effects on crucifer-infecting Tobamovirus (crTMV) infections. AC2 enhanced both spread and brightness of the crTMV-green fluorescent protein (GFP) lesions, whereas 2b and both P1 suppressors enhanced spread but not brightness of these lesions. P19 promoted spread of the infection into new foci within the infiltrated leaf, whereas HcPro and P25 suppressed the spread of crTMV-GFP lesions.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.