In recent years, researches on travel recommendation have attracted extensive attentions due to the wide applications. Among them, one of the active topics is constraint-based trip recommendation for meeting user's personal requirements. Although a number of studies on this topic have been proposed in literatures, most of them only regard the user-specific constraints as some filtering conditions for planning the trip. In fact, immersing the constraints into travel recommendation systems to provide a personalized trip is desired for users. Furthermore, time complexity of trip planning from a set of attractions is sensitive to the scalability of travel regions. Hence, how to reduce the computational cost by parallel cloud computing techniques is also a critical issue. In this paper, we propose a novel framework named Personalized Trip Recommendation (PTR) to efficiently recommend the personalized trips meeting multiple constraints of users by mining user's check-in behaviors. In PTR, a miningbased module is first proposed to estimate the scores of attractions by considering both of user-based preferences and temporal-based properties. Then, a trip planning algorithm named Parallel TripMine + is proposed to efficiently plan the trip that satisfies multiple user-specific constraints. To our best knowledge, this is the first work on travel recommendation that considers the issues of multiple constraints, social relationship, temporal property and parallel computing simultaneously. Through comprehensive experimental evaluations on a real check-in dataset obtained from Gowalla, PTR is shown to deliver excellent performance.
In recent years, researches on recommendation of urban PointsOf-Interest (POI), such as restaurants, based on social information have attracted a lot of attention. Although a number of socialbased recommendation techniques have been proposed in the literature, most of their concepts are only based on the individual or friends' check-in behaviors. It leads to that the recommended POIs list is usually constrained within the users' or friends' living area. Furthermore, since context-aware and environmental information changes quickly, especially in urban areas, how to extract appropriate features from such kind of heterogeneous data to facilitate the recommendation is also a critical and challenging issue. In this paper, we propose a novel approach named Urban POI-Mine (UPOI-Mine) that integrates location-based social networks (LBSNs) for recommending users urban POIs based on the user preferences and location properties simultaneously. The core idea of UPOI-Mine is to build a regression-tree-based predictor in the normalized check-in space, so as to support the prediction of interestingness of POI related to each user's preference. Based on the LBSN data, we extract the features of places in terms of i) Social Factor, ii) Individual Preference, and iii) POI Popularity for model building. To our best knowledge, this is the first work on urban POI recommendation that considers social factor, individual preference and POI popularity in LBSN data, simultaneously. Through comprehensive experimental evaluations on a real dataset from Gowalla, the proposed UPOIMine is shown to deliver excellent performance.
In recent years, research into the mining of user check-in behavior for point-of-interest (POI) recommendations has attracted a lot of attention. Existing studies on this topic mainly treat such recommendations in a traditional manner-that is, they treat POIs as items and check-ins as ratings. However, users usually visit a place for reasons other than to simply say that they have visited. In this article, we propose an approach referred to as Urban POI-Walk (UPOI-Walk), which takes into account a user's social-triggered intentions (SI), preference-triggered intentions (PreI), and popularity-triggered intentions (PopI), to estimate the probability of a user checking-in to a POI. The core idea of UPOI-Walk involves building a HITS-based random walk on the normalized check-in network, thus supporting the prediction of POI properties related to each user's preferences. To achieve this goal, we define several user-POI graphs to capture the key properties of the check-in behavior motivated by user intentions. In our UPOI-Walk approach, we propose a new kind of random walk model-Dynamic HITS-based Random Walk-which comprehensively considers the relevance between POIs and users from different aspects. On the basis of similitude, we make an online recommendation as to the POI the user intends to visit. To the best of our knowledge, this is the first work on urban POI recommendations that considers user check-in behavior motivated by SI, PreI, and PopI in location-based social network data. Through comprehensive experimental evaluations on two real datasets, the proposed UPOI-Walk is shown to deliver excellent performance. . 2014. Mining user check-in behavior with a random walk for urban point-of-interest recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.