The elusive nature of the post‐2004 upper ocean warming has exposed uncertainties in the ocean's role in the Earth's energy budget and transient climate sensitivity. Here we present the time evolution of the global ocean heat content for 1958 through 2009 from a new observation‐based reanalysis of the ocean. Volcanic eruptions and El Niño events are identified as sharp cooling events punctuating a long‐term ocean warming trend, while heating continues during the recent upper‐ocean‐warming hiatus, but the heat is absorbed in the deeper ocean. In the last decade, about 30% of the warming has occurred below 700 m, contributing significantly to an acceleration of the warming trend. The warming below 700 m remains even when the Argo observing system is withdrawn although the trends are reduced. Sensitivity experiments illustrate that surface wind variability is largely responsible for the changing ocean heat vertical distribution.
Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.
The AD/VI-Aeo/us mission will provide global wind profile observationswith the aim to demonstrate improvement in atmospheric wind analyses for the benefit of numerical weather prediction and climate studies.
A relationship between busted European forecasts, a Rockies trough, and storms over eastern North America suggests the importance of improving quality and use of observations, model depiction of convective systems, and representation of uncertainties.
Doppler lidar technology has advanced to the point where wind measurements can be made with confidence from space, thus filling a major gap in the global observing system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.