The photogrammetric acquisition of 3D object models can be achieved by Structure from Motion (SfM) computation of photographs taken from multiple viewpoints. All-around 3D models of small artefacts with complex geometry can be difficult to acquire photogrammetrically and the precision of the acquired models can be diminished by the generic application of automated photogrammetric workflows. In this paper, we present two versions of a complete rotary photogrammetric system and an automated workflow for all-around, precise, reliable and low-cost acquisitions of large numbers of small artefacts, together with consideration of the visual quality of the model textures. The acquisition systems comprise a turntable and (i) a computer and digital camera or (ii) a smartphone designed to be ultra-low cost (less than $150). Experimental results are presented which demonstrate an acquisition precision of less than 40 µm using a 12.2 Megapixel digital camera and less than 80 µm using an 8 Megapixel smartphone. The novel contribution of this work centres on the design of an automated solution that achieves high-precision, photographically textured 3D acquisitions at a fraction of the cost of currently available systems. This could significantly benefit the digitisation efforts of collectors, curators and archaeologists as well as the wider population.
A novel collaborative artefact reconstruction environment design is presented that is informed by experimental task observation and participatory design. The motivation for the design was to enable collaborative human and computer effort in the reconstruction of fragmented cuneiform tablets: millennia-old clay tablets used for written communication in early human civilisation. Thousands of joining cuneiform tablet fragments are distributed within and between worldwide collections. The reconstruction of the tablets poses a complex 3D jigsaw puzzle with no physically tractable solution.In reconstruction experiments, participants collaborated synchronously and asynchronously on virtual and physical reconstruction tasks. Results are presented that demonstrate the difficulties experienced by human reconstructors in virtual tasks compared to physical tasks. Unlike computer counterparts, humans have difficulty identifying joins in virtual environments but, unlike computers, humans are averse to making incorrect joins. A successful reconstruction environment would marry the opposing strengths and weaknesses of humans and computers, and provide tools to support the communications and interactions of successful physical performance, in the virtual setting.The paper presents a taxonomy of the communications and interactions observed in successful physical and synchronous collaborative reconstruction tasks. Tools for the support of these communications and interactions were successfully incorporated in the "i3D" virtual environment design presented.
The interaction authors are collaborators of The Virtual Cuneiform Tablet Reconstruction (VCTR) Project-an international collaboration inspired by the ambition to support virtual access to cuneiform artefacts and to reconstruct cuneiform tablets by joining virtual fragments together. The project aims to support and resource low-cost and easy-to-use 3D acquisition systems, advance automated virtual reconstruction algorithms, evolve a collaborative reconstruction environment and facilitate interactive on-line 3D archiving. The author disciplines include Computer Science, Electronic Engineering and Assyriology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.