In addition to being the respiratory organ in fish, the gills form a barrier against the external milieu. Innate and adaptive immune system components have been detected in the gills, but lymphoid cell accumulations similar to that seen in the mammalian mucosa have not been described. The present investigations revealed cell accumulations on the caudal edge of interbranchial septum at the base of the gill filaments in the Atlantic salmon. Cytokeratin immunohistochemical staining and identification of a basal membrane and desmosome cell junctions by electron microscopy showed that the cell accumulation was located intraepithelially. Major histocompatibility complex (MHC) class II + cells were detected by immunohistochemistry, and laser capture micro-dissection and subsequentRT-PCR analysis revealed expression of T-cell receptor transcripts in the investigated tissue, suggesting the presence of T cells. The intraepithelial tissue reported here may be a suitable location for immune surveillance of gill infections, as well as a target site for new vaccine approaches and investigations of epithelial immunity. This is the first description of a lymphocyte cell aggregation within a teleostian gill epithelium network, illustrating a phylogenetically early form of leukocyte accumulations in a respiratory organ.
The purpose of this study was to investigate the nature of variably sized pigmented foci encountered in fillets of farmed Atlantic salmon, Salmo salar L. The material was sampled on the fillet production line and on salmon farms from fish with an average size of 3 kg from various producers. The fish had been routinely vaccinated by injection. Gross pathology, histology, immunohistochemistry using antisera against major histocompatibility complex (MHC) class II beta chain and transmission electron microscopy (TEM) were used to characterize the changes. Macroscopically, melanized foci were seen penetrating from the peritoneum deep into the abdominal wall, sometimes right through to the skin, and also embedded in the caudal musculature. Histological investigation revealed muscle degeneration and necrosis, fibrosis and granulomatous inflammation containing varying numbers of melano-macrophages. Vacuoles, either empty or containing heterogeneous material, were frequently seen. The presence of abundant MHC class II+ cells indicated an active inflammatory condition. TEM showed large extracellular vacuoles and leucocytes containing homogeneous material of lipid-like appearance. The results showed that the melanized foci in Atlantic salmon fillet resulted from an inflammatory condition probably induced by vaccination. The described condition is not known in wild salmon and in farmed salmon where injection vaccination is not applied.
Over half of the salmon consumed globally are farm-raised. The introduction of oil-adjuvanted vaccines into salmon aquaculture made large-scale production feasible by preventing infections. The vaccines that are given i.p. contain oil adjuvant such as mineral oil. However, in rodents, a single i.p. injection of adjuvant hydrocarbon oil induces lupus-like systemic autoimmune syndrome, characterized by autoantibodies, immune complex glomerulonephritis, and arthritis. In the present study, whether the farmed salmon that received oil-adjuvanted vaccine have autoimmune syndrome similar to adjuvant oil-injected rodents was examined. Sera and tissues were collected from vaccinated or unvaccinated Atlantic salmon (experimental, seven farms) and wild salmon. Autoantibodies (immunofluorescence, ELISA, and immunoprecipitation) and IgM levels (ELISA) in sera were measured. Kidneys and livers were examined for pathology. Autoantibodies were common in vaccinated fish vs unvaccinated controls and they reacted with salmon cells/Ags in addition to their reactivity with mammalian Ags. Diffuse nuclear/cytoplasmic staining was common in immunofluorescence but some had more specific patterns. Serum total IgM levels were also increased in vaccinated fish; however, the fold increase of autoantibodies was much more than that of total IgM. Sera from vaccinated fish immunoprecipitated ferritin and ∼50% also reacted with other unique proteins. Thrombosis and granulomatous inflammation in liver, and immune-complex glomerulonephritis were common in vaccinated fish. Autoimmunity similar to the mouse model of adjuvant oil-induced lupus is common in vaccinated farmed Atlantic salmon. This may have a significant impact on production loss, disease of previously unknown etiology, and future strategies of vaccines and salmon farming.
Visceral organs of ectothermic vertebrates harbour melanin-containing leukocytes termed melanomacrophages. These cells are thought to participate in immune reactions and free-radical trapping. In teleosts, the melanin-producing ability of melanomacrophages has hitherto not been confirmed by molecular techniques. Here, a leukocyte marker and the apparatus for melanosome production and transport were investigated in an Atlantic salmon (Salmo salar) pronephros-derived mononuclear leukocyte (SHK-1) cell line. The SHK-1 cells expressed transcripts specific for a mammalian CD83 homologue, a standard surface marker for activated or differentiated dendritic cells, and dopachrome tautomerase/tyrosinase-related protein-2, a melanocyte specific enzyme essential for melanin production. Reduction potential of melanin or its precursors was demonstrated histochemically after prolonged cultivation. Ultrastructural investigations revealed tyrosinase and acid phosphate activity in identical organelles and BSA-gold co-localized with multilamellar melanosomes after 2 h internalization. Apparently, melanosomes were transported and released through periodically occurring tubules fusing with the plasma membrane. Video monitoring revealed filopodia and macropinocytosis. These results showed that the SHK-1 cell line is capable of melanogenesis and melanosome secretion. Melanin-producing cells in teleost pronephros may represent a distinct CD83(+) leukocyte population consisting of phylogenetically relict multifunctional cells. This is the first report of a melanin-producing leukocyte cell-line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.