Abstract-Multi-vehicle operations using various types of unmanned vehicles (UVs) can increase efficiency of marine data acquisition, reduce the crew risk and lower mission costs. These types of missions are very complex and often involve systems that are not interoperable. From an operational perspective however, some level of integration is necessary. Typically, a common network system architecture and Situation Awareness (SA) platform are required. The architecture allows operators to transfer data between vehicles and their operators, while the SA platform allows to monitor mission progress and react to changes. This paper presents a network system architecture used during an experiment realized in Spring 2016 in Norway. 8 departments from 5 institutions worked together to combine operation of 4 UVs (aerial, surface, underwater), a support vessel and onshore team. The description is followed by a backbone network performance analysis. Several cases are presented, with focus on a transmission between manned vessel and Unmanned Surface Vehicle (USV), including direct connection, and data-relay mechanism via Unmanned Aerial Vehicle (UAV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.