In the past decades, a persistent progression of diabetic vascular complications despite reversal of hyperglycemia has been observed in both experimental and clinical studies. This durable effect of prior hyperglycemia on the initiation and progression of diabetic vasculopathies was defined as "metabolic memory". Subsequently, enhanced glycation of cellular proteins and lipids, sustained oxidative stress, and prolonged inflammation were demonstrated to mediate this phenomenon. Recently, emerging evidence strongly suggests that epigenetic modifications may account for the molecular and phenotypic changes associated with hyperglycemic memory. In this review, we presented an overview on the discovery of metabolic memory, the recent progress in its molecular mechanisms, and the future implications related to its fundamental research and clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.