Purpose To investigate risk factors of bone cement leakage in percutaneous vertebroplasty(PVP)for osteoporotic vertebral compression fracture (OVCF). Methods A total of 236 patients (344 vertebrae) who underwent PVP between November 2016 and June 2020 were enrolled in the study. Clinical and radiological characteristics, including age, gender, course of disease, trauma, type of vertebral fracture, cortical continuity of vertebral body, intervertebral vacuum cleft (IVC), fracture severity, fracture level, basivertebral foramen, bone cement dispersion types, the cement injection volume, the type of cement leakage, puncture approach, and intrusion of the posterior wall, were considered as potential risk factors. Three types of leakage (type-B, type-C, and type-S) were defined and risk factors for each type were analyzed. Logistic analysis was used to study the relationship between each factor and the type of cement leakage. Results The incidences of the three types of leakage were 28.5%, 24.4%, and 34.3%. The multinomial logistic analysis revealed that the factors of type-B leakage were the shape of cement and basivertebral foramen. One significant factor related to type-C leakage was cortical disruption, and the factors of type-S leakage were bone cement dispersion types, basivertebral foramen, cleft, fracture severity, an intrusion of the posterior wall, and gender. Conclusion Different types of cement leakage have their own risk factors, and the analysis of risk factors of these might be helpful in reducing the rate of cement leakage.
Background IL-6 plays a pivotal role in resistance to chemotherapeutics, including lobaplatin. However, the underlying mechanisms are still unclear. This study was to investigate the changes in phosphoproteins and their related signaling pathways in the process of IL-6-induced chemoresistance to lobaplain in osteosarcoma cells. Methods We performed a quantitative phosphoproteomic analysis of the response of SaOS-2 osteosarcoma cells to recombinant human IL-6 (rhIL-6) intervention prior to lobaplatin treatment. The cells were divided into the control group (Con), the lobaplatin group (Lob), and the rhIL-6-and-lobaplatin group (IL-6). Three biological replicates of each group were included. The differentially expressed phosphoproteins were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Netphos 3.1 was used for the prediction of kinases, and STRING was used for the visualization of protein–protein interactions. The conserved motifs surrounding the phosphorylated residues were analyzed using the motif-x algorithm. Western blot analysis was performed to verify the differential expression of p-FLNC, its predicted kinase and the related signaling pathway. The results of the bioinformatic analysis were validated by immunohistochemical staining of clinical specimens. Results In total, 3373 proteins and 12,183 peptides, including 3232 phosphorylated proteins and 11,358 phosphorylated peptides, were identified and quantified. Twenty-three significantly differentially expressed phosphoproteins were identified in the comparison between the IL-6 and Lob groups, and p-FLNC ranked second among these phosphoproteins. GO and KEGG analyses revealed the pivotal role of mitogen-activated protein kinase signaling in drug resistance induced by rhIL-6. Four motifs, namely, -SPxxK-, -RxxSP-, -SP-, and -SPK-, demonstrated higher expression in the IL-6 group than in the Lob group. The western blot analysis results verified the higher expression of p-FLNC, AKT1, and p-ERK and the lower expression of p-JNK in the IL-6 group than in the Con and Lob groups. The immunohistochemical staining results showed that p-FLNC, AKT1 and p-ERK1/2 were highly expressed in platinum-resistant clinical specimens but weakly expressed in platinum-sensitive specimens, and platinum-resistant osteosarcoma specimens demonstrated weak expression of p-JNK. Conclusions This phosphoproteomic study is the first to reveal the signature associated with rhIL-6 intervention before lobaplatin treatment in human osteosarcoma cells. p-FLNC, AKT1, and MAPK signaling contributes to resistance to lobaplatin in osteosarcoma SaOS-2 cells and may represent molecular targets to overcome osteosarcoma chemoresistance.
Objective: Spinal cord injury (SCI) is a devastating disease resulting in lifelong disability, but the molecular mechanism remains unclear. Our study was designed to observe the role of excision repair cross-complementing group 6 (ERCC6) following SCI and to determine the underlying mechanism.Methods: SCI mouse models and LPS-induced microglia cell models were established. ERCC6 expression was blocked by ERCC6-siRNA-carrying lentivirus. Nissl staining was utilized for detecting neuronal damage, and apoptosis was analyzed with TUNEL and Western blotting (apoptotic markers). Immunofluorescence was used for measuring macrophage markers (CD68 and F4/80) and astrocyte and microglia markers (GFAP and Iba-1). Pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were measured via ELISA. Senescent cells were estimated via SA-β-Gal staining as well as Western blot (senescent markers p21 and p27). Oxidative stress was investigated by detecting the expression of 4-HNE, Nrf2, and Keap1, and intracellular ROS levels.Results: ERCC6 expression was remarkably upregulated both in the spinal cord of SCI mice and LPS-induced microglia cells. ERCC6 deficiency alleviated neuronal damage and apoptosis. Macrophage infiltration and inflammatory response were suppressed by si-ERCC6 treatment. Moreover, ERCC6 blockage ameliorated astrocyte and microglia activation and cell senescence in the damaged spinal cord. Excessive oxidative stress was significantly decreased by ERCC6 knockdown in SCI.Conclusion: Collectively, ERCC6 exerts crucial functions in mediating physiological processes (apoptosis, inflammation, senescence, and oxidative stress), implying that ERCC6 might act as a prospective therapeutic target against SCI.
Background: Given the indispensable role of animal models in preclinical studies of spinal cord injury (SCI) and the current state of available impactors, we designed a modified impactor for establishing contusion SCI in rats. The major improvement is the replacement of the impactor rod with a weight and an impactor tip.Methods: Preoperatively, radiographs of 8-week-old female Wistar rats were taken to establish a protocol for locating the target spinal segment. A total of 72 rats were randomly divided into 4 groups: the sham, 12.5-, 25-and 50-mm groups. Within 35 days postinjury (dpi), the Basso, Beattie, and Bresnahan locomotor rating scale (BBB) was used to evaluate the hindlimb motor function of the rats. At 7 dpi, the rats were sacrificed, and the spinal cord tissue was fixed. Hematoxylin-eosin (HE) staining was used to assess histological changes. Subsequently, immunofluorescence staining was performed to visualize the expression and distribution of GFAP, CD68, MBP, and NeuN. Additionally, rats were sacrificed, and their tissues were extracted for relevant protein assays. At 3 and 7 dpi, electrophysiological function was evaluated by measuring motor evoked potentials (MEPs) and sensory evoked potentials (SEPs).Results: The behavioral results revealed that higher strike heights were associated with lower BBB scores.Over time, the BBB scores of the SCI rats exhibited an improving trend. Quantitative analysis of the lesions indicated that as the impact height increased, the area of histological destruction, GFAP-negative area, CD68-positive cell count, and MBP-positive destruction area increased, and the number of NeuN-positive cells decreased. Western blot analysis further verified relevant protein changes. Electrophysiology confirmed that the MEP and SEP amplitudes decreased as the strike height increased.Conclusions: Thus, these results confirm that this modified impactor can be used to establish a graded SCI model in rats. The model is clinically relevant, reproducible, stable, accessible, and affordable, providing a practical tool with which to elucidate the pathophysiological mechanisms and potential therapies for contusive SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.