Biosurfactants are an alternative to petrochemical derivatives, and filamentous fungi are a promising source of these molecules. This work identified 33 strains of filamentous fungi in agroindustrial wastes. This is important because these results open the opportunity of finding new biosurfactants (hydrophobins) with unique properties. We propose the evaluation of surface tension in the supernatant as a quantitative screening to determine the production of biosurfactants from the strains of fungi.
Cutinases are secreted by filamentous fungi that and hydrolyze polymers. However, few selection methods for cutinases are available. Here, we studied three screening methods using 33 strains of filamentous fungi isolated from banana rachis with high potential to produce cutinases. In the first method, strains were grown in Czapec-Dox mineral medium containing flaxseed oil. We note that six strains of the genera Fusarium, Penicillium, and Mucor had cutinase activity. The second method evaluated strains with triacetin in rhodamine B, which indicated what strains had esterase property. Finally, strains were subjected to fermentation with flaxseed oil; lipolytic and cutinolytic activity were determined. The species identified as the best producers of cutinases were Fusarium fujikuroi and Penicillium chrysogenum, and we obtained two extracellular cutinases with activities of 33.5 U/mL and 39.4 U/mL respectively. Cutinase was confirmed via degradation of tomato cutin through FTIR.
Background: Extracellular lipases are found in the culture broth when the fermentation is at the end of the exponential phase. Lipases can be induced easily since they are produced by the presence of oily sources or other materials as surfactants, fatty acids, some esters, glycerol and biliary salts. Objective: The aim of this work is to study the effect of carbon source concentration and the use of inductors on biomass production, and the lipolytic activity of a bacterium isolated from mature palm oil fruits. Methods: The yield biomass/substrate was evaluated with glucose as carbon source at different concentrations (3, 5, 7, 10, 15 y 20 g/L) by dry weight and OD (600 nm). Lipolytic activity was evaluated by spectrophotometric assay using p-nitrofenilpalmitate at 37°C for 15 min. Results: Gram negative microorganisms with lipolytic activity isolated from palm fruit were identified as Pseudomona aeruginosa. The growth of the bacteria was inhibited when glucose was used at concentrations greater than 5%. The production of lipase was induced by using three inducers (Palm oil, Tween 20 and palm oil:Tween 20 mixture), at three different induction times (0, 11 and 18 hours of fermentation). The highest activity (3,81 µmoles/ mL*min) was observed when the palm oil:Tween 20 mixture was added at 11 hours of fermentation. The kinetic of p-nitrophenylpalmitate hydrolysis using the supernatant of a culture induced with palm oil:Tween 20 mixture at 11 hours showed the production of p-nitrophenol beyond 300 minutes, with the greatest hydrolysis rate during the first 7 minutes. Conclusions: The growth of P. aeruginosa was not affected by using glucose as carbon source at concentrations of 3% and 5%. There was a basal level of lipase production without inducer, and greater lipolytic activity was achieved with the addition of inducers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.