Highlights d Wild African D. melanogaster are seasonally associated with marula fruit d Marula is the likely ancestral host of D. melanogaster d Marula odor activates a key odorant receptor that shows signs of regional adaptation d Marula use may have driven the switch to human commensalism
The spruce seed moth, Cydia strobilella L., is a serious pest on cones of spruce (Picea spp.) in the Holarctic region. Previous studies from different parts of its area of distribution have reported conflicting results on the composition of its sex pheromone. By gas chromatography with electroantennographic detection, coupled gas chromatography-mass spectrometry, a Y-tube olfactometer bioassay, and field trials, the sex pheromone of Swedish populations of the species was identified as (8E,10E)-dodecadienyl acetate and (8E,10Z)-dodecadienyl acetate. About 0.5 pg of each pheromone component was extracted per female. The most attractive blend of EE- and EZ-isomers was about 6:4, respectively, and 0.3 microg of the blend per rubber septum was the most attractive dosage for field trapping. Monounsaturated components previously reported as sex pheromone components/attractants for C. strobilella, (E)-8-dodecenyl acetate in Canadian populations and (Z)-8-dodecenol in Polish and Dutch populations, did not attract any C. strobilella in this study. Large numbers of C. jungiella Clerck were trapped by using (8E,10Z)-dodecadienyl acetate alone, whereas (Z)-8-dodecenol attracted Pammene splendidulana Guenée and P. rhediella Clerck.
Combining pheromone trapping and genetic analyses can be useful when trying to resolve complexes of closely related insect taxa that are difficult to distinguish based on morphological characters. Nearctic and Palearctic populations of the spruce seed moth, Cydia strobilella L., have been considered taxonomically synonymous since 1983, but more recent work revealing distinct sex pheromones for Canadian and Swedish moths suggest that populations in the two regions belong to different species. In order to test this hypothesis, we performed field trapping using different pheromone lures at ten sites in North America, Europe and Asia, and reconstructed phylogenetic relationships among trapped moths using mitochondrial (cytochrome oxidase subunit I ) and nuclear (elongation factor 1 alpha) DNA sequence data. Trapping data and tree topologies for both genes revealed distinct pherotypes in North America and Eurasia. A genetically distinct population from China was investigated further with respect to its sex pheromone. Electrophysiological data indicated that Chinese females produce a deviant ratio of the sex pheromone components (dienic acetates) compared to Swedish females. However, trapping experiments in both areas revealed a similar broad response profile in males to a wide range of acetate ratios, and these populations should be considered taxonomically synonymous. A previous suggestion of an agonistic effect on the attraction of C. strobilella males in Sweden when adding the corresponding alcohols to the binary acetate blend was also tested in Sweden as well as in China, with no observed effect on attraction of males. In
Under an artificial light:dark cycle, females of Lampronia capitella were observed calling, with extended terminal abdominal segments, during the first 2 hr of the photoperiod. Extracts of terminal abdominal segments from females elicited large electroantennographic responses from male antennae. Gas chromatography with electroantennographic detection revealed three active peaks. Based on comparison of retention times and mass spectra of synthetic standards, these compounds were identified as (Z,Z)-9,11-tetradecadienol and the corresponding acetate and aldehyde. The electroantennographic activity of the four geometric isomers of all three compounds was investigated, and the respective (Z,Z)-isomer was found to be the most active in all cases. Aldehydes generally elicited larger antennal responses than alcohols, whereas acetates were the least active compounds. A subtractive trapping assay in the field, based on a 13:26:100 micrograms mixture of (Z,Z)-9,11-tetradecadienal, (Z,Z)-9,11-tetradecadienyl acetate, and (Z,Z)-9,11-tetradecadienol confirmed that all three compounds are pheromone components. Subtraction of (Z,Z)-9,11-tetradecadienol from the blend completely eliminated its attractiveness, whereas the other two-component blends showed reduced activity. This is the first pheromone identification from the monotrysian superfamily Incurvarioidea, confirming that the common pheromones among ditrysian moths (long-chain fatty acid derivatives comprising alcohols, acetates, and aldehydes with one or more double bonds) is not an autapomorphy of Ditrysia, but a synapomorphy of the more advanced heteroneuran lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.