Gold catalysis has recently found its first large-scale applications in the chemical industry. This Minireview provides a critical analysis of the success factors and of the main obstacles that had to be overcome on the long way from the discovery to the commercialization of gold catalysts. The insights should be useful to researchers in both academia and industry working on the development of tomorrow's gold catalysts to tackle significant environmental and economic issues.
The electrocatalytic properties of nanostructured gold electrodes for glucose electro-oxidation in KOH were investigated by cyclic voltammetry and compared with a commercially available polycrystalline gold electrode. These electrodes were prepared by depositing gold nanoparticles from a sol onto different carbonaceous conductive supports: glassy carbon, carbon cloth and graphite paper. The gold sol was prepared reducing an aqueous solution of tetrachloroauric acid with sodium borohydride. In order to improve gold nanoparticle adhesion, the substrate surfaces were treated with warm concentrated nitric acid. Gold on treated carbon cloth turned out to be a very promising anode for glucose electro-oxidation. In order to better understand the glucose oxidation its pH dependence as well as sorbitol (the glucose reduction product) electroxidation were investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.