The de novo synthesis of ethanolamine plasmalogen in isolated neuronal and glial cells from adult rabbit brain cortex was investigated in vitro, using labeled cytidine‐5′‐diphosphate ethanolamine as lipid precursor. The neuronal cell enriched fraction was found to possess a twofold ethanolaminephosphotransferase activity (EC 2.7.8.1), as compared to the glial fraction. The neuronal/glial ratio was similar both in the absence and in the presence of saturating alkenylacyl glycerol. Under the most favorable conditions, rates of 31 nmoles and 16 nmoles ethanolamine plasmalogen/mg protein/30 min were obtained for neurons and glia, respectively. Several kinetic properties of the phosphotransferase were found to be similar both in neurons and glia, e.g., Km of cytidine‐5′‐diphosphate ethanolamine, pH optimum, need for divalent cations; the Km value for alkenylacyl glycerol was twofold higher in glia (4 mM) than in neurons (2 mM). The neuronal/glial ratio for the phosphatidylethanolamine synthesizing activity was 2, 4.5, and 6 on using diacyl glycerols prepared from ox heart, ox brain, and soybean, respectively. It is concluded that the cytidine‐dependent system for ethanolamine plasmalogen and phosphatidylethanolamine synthesis is concentrated prevalently in the neuronal cells, as compared to glia.
In rat brain stem slices, we investigated the role of platelet activating factor (PAF) in long-term potentiation (LTP) induced in the ventral part of the medial vestibular nuclei (MVN) by high-frequency stimulation (HFS) of the primary vestibular afferent. The synaptosomal PAF receptor antagonist, BN-52021 was administered before and after HFS. BN-52021 did not modify the vestibular potentials under basal conditions, but it reduced the magnitude of potentiation induced by HFS, which completely developed after the drug wash-out. The same effect was obtained by using CV-62091, a more potent PAF antagonist at microsomal binding sites, but with concentrations higher than those of BN-52021. By contrast both BN-52021 and CV-6209 had no effect on the potentiation once induced. This demonstrates that PAF is involved in the induction but not in the maintenance of vestibular long-term effect through activation of synaptosomal PAF receptors. In addition, we analyzed the effect of the PAF analogue, 1-O-hexadecyl-2-O- (methylcarbamyl)-sn-glycero-3-phosphocoline (MC-PAF) and the inactive PAF metabolite, 1-O-hexadecyl-sn-glycero-3-phosphocoline (Lyso-PAF) on vestibular responses. Our results show that MC-PAF, but not Lyso-PAF induced potentiation. This potentiation was prevented by D,L-2-amino 5-phosphonopentanoic acid, suggesting an involvement of N-methyl-D-aspartate receptors. Furthermore, under BN-52021 and CV-6209, the MC-PAF potentiation was reduced or abolished. The dose-effect curve of MC-PAF showed a shift to the right greater under BN-52021 than under CV-6209, confirming the main dependence of MC-PAF potentiation on the activation of synaptosomal PAF receptors. Our results suggest that PAF can be released in the MVN after the activation of postsynaptic mechanisms triggering LTP, and it may act as a retrograde messenger which activates the presynaptic mechanisms facilitating synaptic plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.