Abstract. Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of aerosols and tropospheric nitrogen dioxide (NO2) were carried out in Uccle (50.8∘ N, 4.35∘ E), Brussels, during 1 year from March 2018 until March 2019. The instrument was operated in both the UV and visible wavelength ranges in a dual-scan configuration consisting of two sub-modes: (1) an elevation scan in a fixed viewing azimuthal direction (the so-called main azimuthal direction) pointing to the northeast and (2) an azimuthal scan in a fixed low elevation angle (2∘). By applying a vertical profile inversion algorithm in the main azimuthal direction and a parameterization technique in the other azimuthal directions, near-surface NO2 volume mixing ratios (VMRs) and vertical column densities (VCDs) were retrieved in 10 different azimuthal directions. The dual-scan MAX-DOAS dataset allows for partly resolving the horizontal distribution of NO2 around the measurement site and studying its seasonal variations. Furthermore, we show that measuring the tropospheric NO2 VCDs in different azimuthal directions improves the spatial colocation with measurements from the Sentinel-5 Precursor (S5P), leading to a reduction of the spread in validation results. By using NO2 vertical profile information derived from the MAX-DOAS measurements, we also resolve a systematic underestimation in S5P NO2 data due to the use of inadequate a priori NO2 profile shape data in the satellite retrieval.
Abstract. In September 2016, 36 spectrometers from 24 institutes measured a number of key atmospheric pollutants for a period of 17 d during the Second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) that took place at Cabauw, the Netherlands (51.97∘ N, 4.93∘ E). We report on the outcome of the formal semi-blind intercomparison exercise, which was held under the umbrella of the Network for the Detection of Atmospheric Composition Change (NDACC) and the European Space Agency (ESA). The three major goals of CINDI-2 were (1) to characterise and better understand the differences between a large number of multi-axis differential optical absorption spectroscopy (MAX-DOAS) and zenith-sky DOAS instruments and analysis methods, (2) to define a robust methodology for performance assessment of all participating instruments, and (3) to contribute to a harmonisation of the measurement settings and retrieval methods. This, in turn, creates the capability to produce consistent high-quality ground-based data sets, which are an essential requirement to generate reliable long-term measurement time series suitable for trend analysis and satellite data validation. The data products investigated during the semi-blind intercomparison are slant columns of nitrogen dioxide (NO2), the oxygen collision complex (O4) and ozone (O3) measured in the UV and visible wavelength region, formaldehyde (HCHO) in the UV spectral region, and NO2 in an additional (smaller) wavelength range in the visible region. The campaign design and implementation processes are discussed in detail including the measurement protocol, calibration procedures and slant column retrieval settings. Strong emphasis was put on the careful alignment and synchronisation of the measurement systems, resulting in a unique set of measurements made under highly comparable air mass conditions. The CINDI-2 data sets were investigated using a regression analysis of the slant columns measured by each instrument and for each of the target data products. The slope and intercept of the regression analysis respectively quantify the mean systematic bias and offset of the individual data sets against the selected reference (which is obtained from the median of either all data sets or a subset), and the rms error provides an estimate of the measurement noise or dispersion. These three criteria are examined and for each of the parameters and each of the data products, performance thresholds are set and applied to all the measurements. The approach presented here has been developed based on heritage from previous intercomparison exercises. It introduces a quantitative assessment of the consistency between all the participating instruments for the MAX-DOAS and zenith-sky DOAS techniques.
Abstract. Sentinel-5 Precursor (S-5P), launched in October 2017, carrying the TROPOspheric Monitoring Instrument (TROPOMI) nadir-viewing spectrometer, is the first mission of the Copernicus Programme dedicated to the monitoring of air quality, climate, and ozone. In the presented study, the TROPOMI tropospheric nitrogen dioxide (NO2) level-2 (L2) product (OFFL v1.03.01; 3.5 km × 7 km at nadir observations) has been validated over strongly polluted urban regions by comparison with coincident high-resolution Airborne Prism EXperiment (APEX) remote sensing observations (∼ 75 m × 120 m). Satellite products can be optimally assessed based on (APEX) airborne remote sensing observations, as a large amount of satellite pixels can be fully mapped at high accuracy and in a relatively short time interval, reducing the impact of spatiotemporal mismatches. In the framework of the S-5P validation campaign over Belgium (S5PVAL-BE), the APEX imaging spectrometer has been deployed during four mapping flights (26–29 June 2019) over the two largest urban regions in Belgium, i.e. Brussels and Antwerp, in order to map the horizontal distribution of tropospheric NO2. For each flight, 10 to 20 TROPOMI pixels were fully covered by approximately 2700 to 4000 APEX measurements within each TROPOMI pixel. The TROPOMI and APEX NO2 vertical column density (VCD) retrieval schemes are similar in concept. Overall, for the ensemble of the four flights, the standard TROPOMI NO2 VCD product is well correlated (R = 0.92) but biased negatively by −1.2 ± 1.2 × 1015 molec cm−2 or −14 ± 12 %, on average, with respect to coincident APEX NO2 retrievals. When replacing the coarse 1∘ × 1∘ the massively parallel (MP) version of the Tracer Model version 5 (TM5) a priori NO2 profiles by NO2 profile shapes from the Copernicus Atmospheric Monitoring Service (CAMS) regional chemistry transport model (CTM) ensemble at 0.1∘ × 0.1∘, R is 0.94 and the slope increases from 0.82 to 0.93. The bias is reduced to −0.1 ± 1.0 × 1015 molec cm−2 or −1.0 ± 12 %. The absolute difference is on average 1.3 × 1015 molec cm−2 (16 %) and 0.7 × 1015 molec cm−2 (9 %), when comparing APEX NO2 VCDs with TM5-MP-based and CAMS-based NO2 VCDs, respectively. Both sets of retrievals are well within the mission accuracy requirement of a maximum bias of 25 %–50 % for the TROPOMI tropospheric NO2 product for all individual compared pixels. Additionally, the APEX data set allows the study of TROPOMI subpixel variability and impact of signal smoothing due to its finite satellite pixel size, typically coarser than fine-scale gradients in the urban NO2 field. For a case study in the Antwerp region, the current TROPOMI data underestimate localized enhancements and overestimate background values by approximately 1–2 × 1015 molec cm−2 (10 %–20 %).
Abstract. Sentinel-5 Precursor (S-5P), launched in October 2017, carrying the TROPOspheric Monitoring Instrument (TROPOMI) nadir-viewing spectrometer, is the first mission of the Copernicus Programme dedicated to the monitoring of air quality, climate, and ozone. In the presented study, the TROPOMI tropospheric nitrogen dioxide (NO2) L2 product (OFFL v1.03.01; 3.5 km × 7 km at nadir observations) has been validated over strongly polluted urban regions by comparison with coincident high-resolution Airborne Prism EXperiment (APEX) remote sensing observations (~75 m × 120 m). Satellite products can be optimally assessed based on (APEX) airborne remote sensing observations as a large amount of satellite pixels can be fully mapped at high accuracy and in a relatively short time interval, reducing the impact of spatio-temporal mismatches. In the framework of the S5PVAL-BE campaign, the APEX imaging spectrometer has been deployed during four mapping flights (26–29 June 2019) over the two largest urban regions in Belgium, i.e. Brussels and Antwerp, in order to map the horizontal distribution of tropospheric NO2. For each flight, 10 to 20 TROPOMI pixels were fully covered by approximately 2800 to 4000 APEX measurements within each TROPOMI pixel. The TROPOMI and APEX NO2 vertical column density (VCD) retrieval schemes are similar in concept. Overall for the ensemble of the four flights, the standard TROPOMI NO2 VCD product is well correlated (R = 0.92) but biased negatively by −1.2 ± 1.2 × 1015 molec cm−2 or −14 % ± 12 %, on average, with respect to coincident APEX NO2 retrievals. When replacing the coarse 1° × 1° TM5-MP a priori NO2 profiles by NO2 profile shapes from the CAMS regional CTM ensemble at 0.1° × 0.1°, the slope increases by 11 % to 0.93, and the bias is reduced to −0.1 ± 1.0 × 1015 molec cm−2 or −1.0 % ± 12 %. When the absolute value of the difference is taken, the bias is 1.3 × 1015 molec cm−2 or 16 %, and 0.7 × 1015 molec cm−2 or 9 % on average, when comparing APEX NO2 VCDs with TM5-MP-based and CAMS-based NO2 VCDs, respectively. Both sets of retrievals are well within the accuracy requirement of a maximum bias of 25–50 % for the TROPOMI tropospheric NO2 product for all individual compared pixels. Additionally, the APEX data set allows the study of TROPOMI subpixel variability and impact of signal smoothing due to its finite satellite pixel size, typically coarser than fine-scale gradients in the urban NO2 field. The amount of underestimation of peak plume values and overestimation of urban background values in the TROPOMI data is in the order of 1–2 × 1015 molec cm−2 on average, or 10 %–20 %, in case of an urban scene.
Abstract. Ground-based Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of aerosols and tropospheric nitrogen dioxide (NO2) were carried out in Uccle (50.8° N, 4.35° E) Brussels, during one year from March 2018 until March 2019. The instrument was operated in both UV and visible (Vis) wavelength ranges in a dual-scan configuration consisting of two sub-modes: (1) an elevation scan in a fixed viewing azimuthal direction (the so-called main azimuthal direction) pointing to the Northeast and (2) an azimuthal scan in a fixed low elevation angle (2°). By applying a vertical profile inversion algorithm in the main azimuthal direction and a parameterization technique in the other azimuthal directions, near-surface NO2 concentrations (VMRs) and vertical column densities (VCDs) were retrieved in ten different azimuthal directions. The dual-scan MAX-DOAS dataset allows partly resolving the horizontal distribution of NO2 around the measurement site and studying its seasonal variations. Furthermore, we show that measuring the tropospheric NO2 VCDs in different azimuthal directions improves the spatial colocation with measurements from the Sentinel-5 Precursor (S5P), leading to a reduction of the spread in validation results. By using NO2 vertical profile information derived from the MAX-DOAS measurements, we also resolve a systematic underestimation in S5P NO2 data due to the use of inadequate a-priori NO2 profile shape data in the satellite retrieval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.