SummaryThe mammalian nervous system executes complex behaviors controlled by specialized, precisely positioned, and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse and were grouped by developmental anatomical units and by the expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by genes encoding cell identity, synaptic connectivity, neurotransmission, and membrane conductance. We discovered seven distinct, regionally restricted astrocyte types that obeyed developmental boundaries and correlated with the spatial distribution of key glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of regional identity followed by a secondary diversification. The resource presented here lays a solid foundation for understanding the molecular architecture of the mammalian nervous system and enables genetic manipulation of specific cell types.
Oligodendrocytes have been considered as a functionally homogenous population in the central nervous system (CNS). We performed single-cell RNA-Seq on 5072 cells of the oligodendrocyte lineage from ten regions of the mouse juvenile/adult CNS. Twelve populations were identified, representing a continuum from Pdgfra+ oligodendrocyte precursors (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newlyformed oligodendrocytes were found to be resident in the adult CNS and responsive to complex motor learning. A second Pdgfra+ population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS. *Correspondence to: sten.linnarsson@ki.se, goncalo.castelo-branco@ki.se. Additional Author notes: SM, AZ, HL, WDR, SL and GC-B designed the experiments. PE, EA, JH-L, TH, WDR, SL and GC-B, senior authors, obtained funding. SM, AZ, SC, HH, RAR, DG, MH, AMM, GLM, FR, HL, LX, EF performed experiments. LX, HL and WDR have priority of observation of the rapid differentiation of oligodendrocytes in the complex motor wheel paradigm. SM, AZ, DvB, AMF, GLM, PL analysed data. SM, AZ, SL and GC-B wrote the paper, with the assistance and proofreading of all authors. Oligodendrocytes ensheath axons in the CNS, allowing rapid saltatory conduction and providing metabolic support to neurons. While a largely homogeneous oligodendrocyte population is thought to execute these functions throughout the CNS (1), these cells were originally described as morphologically heterogeneous (2). It is thus unclear if oligodendrocytes become morphologically diversified during maturation through interactions within the local environment, or if there is intrinsic functional heterogeneity (3-5). We analyzed 5072 transcriptomes of single cells expressing markers from the oligodendrocyte lineage, isolated from ten distinct regions of the anterior-posterior and dorsal-ventral axis of the mouse juvenile and adult CNS (Fig. 1A and 1B). Biclustering analysis (6) ( Fig. S1B and S15), hierarchical clustering ( Fig. 1C) and differential expression analysis (Supporting File Supplementary Excel S1 and S2) led to the identification of thirteen distinct cell populations. t-Distributed Stochastic Neighbour Embedding (t-SNE) projection ( Fig. 2A) indicated a narrow differentiation path connecting OPCs and myelinforming oligodendrocytes, diversifying into six mature states, which was supported by pseudo-time analysis (Fig. S2A-B). Europe PMC Funders GroupOPCs co-expressed Pdgfra and Cspg4 (Figs. 2B, S1B and S10) and 10% co-expressed cell cycle genes ( Fig. S2E-F), consistent with a cell division turnover of 19 days in the juvenile cortex (7). Several genes identified in OPCs were previously associated with astrocytes/ radial glia (6) (Fabp7 an...
SummaryUnderstanding human embryonic ventral midbrain is of major interest for Parkinson’s disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.
The mammalian nervous system executes complex behaviors controlled by specialised, precisely positioned and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse, and were grouped by developmental anatomical units, and by the expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by genes encoding cell identity, synaptic connectivity, neurotransmission and membrane conductance. We discovered several distinct, regionally restricted, astrocytes types, which obeyed developmental boundaries and correlated with the spatial distribution of key glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of regional identity, followed by a secondary diversification. The resource presented here lays a solid foundation for understanding the molecular architecture of the mammalian nervous system, and enables genetic manipulation of specific cell types.
The roles of the Wnt signalling pathway in several developmental processes, including synaptic differentiation, are well characterized. The expression of Wnt ligands and Wnt signalling components in the mature mammalian CNS suggests that this pathway might also play a part in synaptic maintenance and function. In fact, Wnts have a crucial role in synaptic physiology, as they modulate the synaptic vesicle cycle, the trafficking of neurotransmitter receptors and the interaction of these receptors with scaffold proteins in postsynaptic regions. In addition, Wnts participate in adult neurogenesis and protect excitatory synaptic terminals from amyloid-beta oligomer toxicity. Here, the latest insights into the function of Wnt signalling in the adult nervous system and therapeutic opportunities for neurodegenerative diseases such as Alzheimer's and Parkinson's disease are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.