Bacterial biofilms have recently been shown to be important in neurosurgical device-related infections. Because the concept of biofilms is novel to most practitioners, it is important to understand that both traditional pharmaceutical therapies and host defense mechanisms that are aimed at treating or overcoming free-swimming bacteria are largely ineffective against the sessile bacteria in a biofilm. Bacterial biofilms are complex surface-attached structures that are composed of an extruded extracellular matrix in which the individual bacteria are embedded. Superimposed on this physical architecture is a complex system of intercellular signaling, termed quorum sensing. These complex organizational features endow biofilms with numerous microenvironments and a concomitant number of distinct bacterial phenotypes. Each of the bacterial phenotypes within the biofilm displays a unique gene expression pattern tied to nutrient availability and waste transport. Such diversity provides the biofilm as a whole with an enormous survival advantage when compared to the individual component bacterial cells. Thus, it is appropriate to view the biofilm as a multicellular organism, akin to metazoan eukaryotic life. Bacterial biofilms are much hardier than free floating or planktonic bacteria and are primarily responsible for device-related infections. Now that basic research has demonstrated that the vast majority of bacteria exist in biofilms, the paradigm of biofilm-associated chronic infections is spreading to the clinical world. Understanding how these biofilm infections affect patients with neurosurgical devices is a prerequisite to developing strategies for their treatment and prevention.
External ventricular drains (EVD) are associated with a high infection rate. Early detection of infection is frequently problematic due to a lack of clinical signs and the time period required for culturing. Bacterial biofilms have been suggested to play an important role in the infection of EVD, but direct evidence is as yet lacking. We report the case of a 17- year-old male with Dandy-Walker malformation who presented with headache, nausea and drowsiness; a CT scan revealed enlarged ventricles. The patient had a history of ventriculoperitoneal shunt revision 3 weeks prior to admission. The shunt was removed on suspicion of infection and an EVD placed. Daily surveillance cultures through the EVD were negative and the EVD was replaced on day 5. Examination of the initial EVD by confocal microscopy demonstrated clear intraluminal biofilm formation; molecular analysis by PCR identified Staphylococcus aureus resident on the catheter. To our knowledge, this is the first direct demonstration of an intraluminal biofilm compromising an EVD. Despite the presence of biofilm on this catheter, the patient demonstrated no clinical signs of infection, and the routine surveillance culture was negative. Undetected biofilm may pose a latent risk on EVD and other neurosurgical catheters.
All glued repairs performed better than non-glued repairs. Both D/T and FL/T repairs performed better than B/T repairs. No repair tolerated pressures throughout the full range of adult supine intracranial pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.