Surface-groundwater interactions play an important role in microbial community compositions of river bank filtrates. Surface water contaminations deriving from environmental influences are attenuated by biogeochemical processes in the hyporheic zone, which are essential for providing clean and high-quality drinking water in abstraction wells. Characterizing the flow regime of surface water into the groundwater body can provide substantial information on water quality, but complex hydraulic dynamics make predictions difficult. Thus, a bottom up approach using microbial community shifting patterns as an overall outcome of dynamic water characteristics could provide more detailed information on the influences that affect groundwater quality. The combination of high-throughput sequencing data together with flow cytometric measurements of total cell counts reveals absolute abundances among taxa, thus enhancing interpretation of bacterial dynamics. 16S rRNA high-throughput sequencing of 55 samples among six wells in a well field in Austria that is influenced by river bank filtrate within a time period of 3 months has revealed both, clear differences as well as strong similarity in microbiome compositions between wells and dates. A significant community shift from April to May occurred in four of six wells, suggesting that surface water flow regimes do affect these wells stronger than others. Triplicate sampling and subsequent sequencing of wells at different dates proved the method to be reproducible. Flow cytometric measurements of total cells indicate microbial shifts due to increased cell counts and emphasize the rise of allochthonous microorganisms. Typical freshwater bacterial lineages (Verrucomicrobia, Bacteroidetes, Actinobacteria, Cyanobacteria, Armatimonadetes) were identified as most increasing phyla during community shifts. The changes are most likely a result of increased water abstraction in the wells together with constant river water levels rather than rain events. The results provide important knowledge for future implementations of well utilization in dependency of the nearby Danube River water levels and can help drawing conclusions about the influence of surface water in the groundwater such that hygienically save and clean drinking water with a stable microbial community can be provided.
Planning, construction and operation of onsite wastewater treatment systems at mountain refuges is a challenge. Energy supply, costly transport, limited water resources, unfavourable climate and load variations are only some of the problems that have to be faced. Additionally, legal regulations are different between and even within countries of the Alps. To ensure sustainability, integrated management of the alpine infrastructure management is needed. The energy and water supply and the wastewater and waste disposal systems and the cross-relations between them were analysed for 100 mountain refuges. Wastewater treatment is a main part of the overall 'mountain refuge' system. The data survey and first analyses showed the complex interaction of the wastewater treatment with the other infrastructure. Main criteria for reliable and efficient operation are training, technical support, user friendly control and a relatively simple system set up. Wastewater temperature, alkalinity consumption and high peak loads have to be considered in the planning process. The availability of power in terms of duration and connexion is decisive for the choice of the system. Further, frequency fluctuations may lead to damages to the installed aerators. The type of water source and the type of sanitary equipment influence the wastewater quantity and quality. Biosolids are treated and disposed separately or together with primary or secondary sludge from wastewater treatment dependent on the legal requirements.
The Water Safety Plan (WSP) is considered the preferred approach to ensure drinking water safety by the World Health Organization (WHO). This approach ideally requires extensive scientific and technical input from a multidisciplinary team of experts. However, in small- and medium-sized municipalities in Austria, financial and personnel resources are usually of very limited availability. Therefore, a spreadsheet based WSP tool was designed to facilitate the implementation of the WSP approach at these small supply units. The WSP tool comprises the relevant national Austrian guidelines, which include the key components of the WSP by the WHO. The tool provides an overview of the required steps, explains how to carry out each step and guides the user through the three key components: system and hazards assessment, control measures and operational monitoring, and management. The practical application of the WSP tool was tested at 12 water utilities over a period of three months. After this period, the tool was improved based on collected feedback from the water utilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.