The effect of adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) activity on 4-aminopyridine (4-AP)-sensitive delayed rectifier current (IdK) in isolated rabbit portal vein smooth muscle cells was studied via whole cell voltage clamp (20-22 degrees C). A threefold increase in 4-AP-sensitive (5 mM) IdK was recorded after gaining cell access during dialysis with 5 mM intracellular ATP and internal Ca2+ buffered to a low level with 5 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Dialysis with the nonhydrolyzable ATP analogue 5'-adenylylimidodiphosphate (5 mM) or the specific peptide inhibitor of PKA (PKI; 10 microM) reduced current runup by 50 and 70%, respectively. Delayed dialysis with PKI reversed runup and inhibited IdK to below initial levels. Forskolin (1 microM) caused a reversible increase in IdK, which was inhibited by 4-AP (5 mM). Isoproterenol (1 microM) reversibly enhanced IdK; the increase was sensitive to propranolol (2 microM) and 4-AP (5 mM) and was prevented by dialysis with PKI (10 microM). IdK was enhanced over the entire voltage range of activation and associated with a negative shift in reversal potential of net whole cell current, consistent with hyperpolarization of resting membrane potential. The data provide the first evidence for a signal transduction mechanism involving beta-adrenoceptors, adenylate cyclase, and a phosphotransferase reaction mediated by PKA for the regulation of delayed rectifier K+ channels in vascular smooth muscle.
Cat ventricular myocytes loaded with [Ca2+]i‐ and pHi‐sensitive probes were used to examine the subcellular mechanism(s) of the Ang II‐induced positive inotropic effect. Ang II (1 μM) produced parallel increases in contraction and Ca2+ transient amplitudes and a slowly developing intracellular alkalisation. Maximal increases in contraction amplitude and Ca2+ transient amplitude were 163 ± 22 and 43 ± 8 %, respectively, and occurred between 5 and 7 min after Ang II administration, whereas pHi increase (0·06 ± 0·03 pH units) became significant only 15 min after the addition of Ang II. Furthermore, the inotropic effect of Ang II was preserved in the presence of Na+‐H+ exchanger blockade. These results indicate that the positive inotropic effect of Ang II is independent of changes in pHi.
Similar increases in contractility produced by either elevating extracellular [Ca2+] or by Ang II application produced similar increases in peak systolic Ca2+ indicating that an increase in myofilament responsiveness to Ca2+ does not participate in the Ang II‐induced positive inotropic effect.
Ang II significantly increased the L‐type Ca2+ current, as assessed by using the perforated patch‐clamp technique (peak current recorded at 0 mV: ‐1·88 ± 0·16 pA pF−1 in control vs. ‐3·03 ± 0·20 pA pF−1 after 6‐8 min of administration of Ang II to the bath solution).
The positive inotropic effect of Ang II was not modified in the presence of either KB‐R7943, a specific blocker of the Na+‐Ca2+ exchanger, or ryanodine plus thapsigargin, used to block the sarcoplasmic reticulum function.
The above results allow us to conclude that in the cat ventricle the Ang II‐induced positive inotropic effect is due to an increase in the intracellular Ca2+ transient, an enhancement of the L‐type Ca2+ current being the dominant mechanism underlying this increase.
Taken together, the results indicate that a low dose of angiotensin II induces release of endothelin, which, in autocrine/paracrine fashion activates the Na(+)/H(+) exchanger, increases [Na(+)](i) and changes E(NCX), promoting the influx of Ca(2+) that leads to a positive inotropic effect (PIE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.