Parasites and their hosts use different strategies to overcome the defenses of the other, often resulting in an evolutionary arms race. Limited animal studies have explored the differential responses of hosts when challenged by differential parasite loads and different developmental stages of a parasite. The fungus-growing ant Trachymyrmex sp. 10 employs three different hygienic strategies to control fungal pathogens: Grooming the antibiotic-producing metapleural glands (MGs) and planting or weeding their mutualistic fungal crop. By inoculating Trachymyrmex colonies with different parasite concentrations (Metarhizium) or stages (germinated conidia or ungermianted conidia of Metarhizium and Escovopsis), we tested whether ants modulate and change hygienic strategies depending on the nature of the parasite challenge. There was no effect of the concentration of parasite on the frequencies of the defensive behaviors, indicating that the ants did not change defensive strategy according to the level of threat. However, when challenged with conidia of Escovopsis sp. and Metarhizium brunneum that were germinated or not-germinated, the ants adjusted their thygienic behavior to fungal planting and MG grooming behaviors using strategies depending on the conidia germination status. Our study suggests that fungus-growing ants can adjust the use of hygienic strategies based on the nature of the parasites.
Background Individuals that band together create new ecological opportunities for microorganisms. In vertical transmission, theory predicts a conserved microbiota within lineages, especially social bees. Bees exhibit solitary to social behavior among and/or within species, while life cycles can be annual or perennial. Bee nests may be used over generations or only once, and foraging ecology varies widely. To assess which traits are associated with bee microbiomes, we analyzed microbial diversity within solitary and social bees of Apidae, Colletidae, and Halictidae, three bee families in Panama’s tropical forests. Our analysis considered the microbiome of adult gut contents replicated through time, localities, and seasons (wet and dry) and included bee morphology and comparison to abdominal (dissected) microbiota. Diversity and distribution of tropical bee microbes (TBM) within the corbiculate bee clade were emphasized. Results We found the eusocial corbiculate bees tended to possess a more conserved gut microbiome, attributable to vertical transmission, but microbial composition varied among closely related species. Euglossine bees (or orchid bees), corbiculates with mainly solitary behavior, had more variable gut microbiomes. Their shorter-tongued and highly seasonal species displayed greater diversity, attributable to flower-visiting habits. Surprisingly, many stingless bees, the oldest corbiculate clade, lacked bacterial genera thought to predate eusociality, while several facultatively social, and solitary bee species possessed those bacterial taxa. Indeed, nearly all bee species displayed a range of affinities for single or multiple variants of the “socially associated” bacterial taxa, which unexpectedly demonstrated high sequence variation. Conclusions Taken together, these results call into question whether specific bacterial associates facilitate eusocial behavior, or are subsequently adopted, or indicate frequent horizontal transmission between perennial eusocial colonies and other social, facultatively social, and solitary bees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.