We introduce a new centrality measure that characterizes the participation of each node in all subgraphs in a network. Smaller subgraphs are given more weight than larger ones, which makes this measure appropriate for characterizing network motifs. We show that the subgraph centrality [C(S)(i)] can be obtained mathematically from the spectra of the adjacency matrix of the network. This measure is better able to discriminate the nodes of a network than alternate measures such as degree, closeness, betweenness, and eigenvector centralities. We study eight real-world networks for which C(S)(i) displays useful and desirable properties, such as clear ranking of nodes and scale-free characteristics. Compared with the number of links per node, the ranking introduced by C(S)(i) (for the nodes in the protein interaction network of S. cereviciae) is more highly correlated with the lethality of individual proteins removed from the proteome.
Many topological and dynamical properties of complex networks are defined by assuming that most of the transport on the network flows along the shortest paths. However, there are different scenarios in which nonshortest paths are used to reach the network destination. Thus the consideration of the shortest paths only does not account for the global communicability of a complex network. Here we propose a new measure of the communicability of a complex network, which is a broad generalization of the concept of the shortest path. According to the new measure, most of real-world networks display the largest communicability between the most connected (popular) nodes of the network (assortative communicability).There are also several networks with the disassortative communicability, where the most "popular" nodes communicate very poorly to each other.Using this information we classify a diverse set of real-world complex systems into a small number of universality classes based on their structuredynamic correlation. In addition, the new communicability measure is able to distinguish finer structures of networks, such as communities into which a network is divided. A community is unambiguously defined here as a set of nodes displaying larger communicability among them than to the rest of nodes in the network.
a b s t r a c tA fundamental problem in the study of complex networks is to provide quantitative measures of correlation and information flow between different parts of a system. To this end, several notions of communicability have been introduced and applied to a wide variety of real-world networks in recent years. Several such communicability functions are reviewed in this paper. It is emphasized that communication and correlation in networks can take place through many more routes than the shortest paths, a fact that may not have been sufficiently appreciated in previously proposed correlation measures. In contrast to these, the communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones. This point of view naturally leads to the definition of communicability in terms of matrix functions, such as the exponential, resolvent, and hyperbolic functions, in which the matrix argument is either the adjacency matrix or the graph Laplacian associated with the network.Considerable insight on communicability can be gained by modeling a network as a system of oscillators and deriving physical interpretations, both classical and quantummechanical, of various communicability functions. Applications of communicability measures to the analysis of complex systems are illustrated on a variety of biological, physical and social networks. The last part of the paper is devoted to a review of the notion of locality in complex networks and to computational aspects that by exploiting sparsity can greatly reduce the computational efforts for the calculation of communicability functions for large networks.
The emerging field of network science deals with the tasks of modeling, comparing, and summarizing large data sets that describe complex interactions. Because pairwise affinity data can be stored in a two-dimensional array, graph theory and applied linear algebra provide extremely useful tools. Here, we focus on the general concepts of centrality, communicability, and betweenness, each of which quantifies important features in a network. Some recent work in the mathematical physics literature has shown that the exponential of a network's adjacency matrix can be used as the basis for defining and computing specific versions of these measures. We introduce here a general class of measures based on matrix functions, and show that a particular case involving a matrix resolvent arises naturally from graph-theoretic arguments. We also point out connections between these measures and the quantities typically computed when spectral methods are used for data mining tasks such as clustering and ordering. We finish with computational examples showing the new matrix resolvent version applied to real networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.