A k-decision tree t (or k-tree) is a recursive partition of a matrix (2D-signal) into k ≥ 1 block matrices (axis-parallel rectangles, leaves) where each rectangle is assigned a real label. Its regression or classification loss to a given matrix D of N entries (labels) is the sum of squared differences over every label in D and its assigned label by t. Given an error parameter ε ∈ (0, 1), a (k, ε)-coreset C of D is a small summarization that provably approximates this loss to every such tree, up to a multiplicative factor of 1 ± ε. In particular, the optimal k-tree of C is a (1 + ε)-approximation to the optimal k-tree of D. We provide the first algorithm that outputs such a (k, ε)-coreset for every such matrix D. The size |C| of the coreset is polynomial in k log(N )/ε, and its construction takes O(N k) time. This is by forging a link between decision trees from machine learning -to partition trees in computational geometry. Experimental results on sklearn and lightGBM show that applying our coresets on real-world data-sets boosts the computation time of random forests and their parameter tuning by up to x10, while keeping similar accuracy. Full open source code is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.