Every plant species examined to date harbors endophytic fungi within its asymptomatic aerial tissues, such that endophytes represent a ubiquitous, yet cryptic, component of terrestrial plant communities. Fungal endophytes associated with leaves of woody angiosperms are especially diverse; yet, fundamental aspects of their interactions with hosts are unknown. In contrast to the relatively species-poor endophytes that are vertically transmitted and act as defensive mutualists of some temperate grasses, the diverse, horizontally transmitted endophytes of woody angiosperms are thought to contribute little to host defense. Here, we document high diversity, spatial structure, and host affinity among foliar endophytes associated with a tropical tree (Theobroma cacao, Malvaceae) across lowland Panama. We then show that inoculation of endophyte-free leaves with endophytes isolated frequently from naturally infected, asymptomatic hosts significantly decreases both leaf necrosis and leaf mortality when T. cacao seedlings are challenged with a major pathogen (Phytophthora sp.). In contrast to reports of fungal inoculation inducing systemic defense, we found that protection was primarily localized to endophyte-infected tissues. Further, endophyte-mediated protection was greater in mature leaves, which bear less intrinsic defense against fungal pathogens than do young leaves. In vitro studies suggest that host affinity is mediated by leaf chemistry, and that protection may be mediated by direct interactions of endophytes with foliar pathogens. Together, these data demonstrate the capacity of diverse, horizontally transmitted endophytes of woody angiosperms to play an important but previously unappreciated role in host defense.
Colletotrichum interacts with numerous plant species overtly as symptomatic pathogens and cryptically as asymptomatic endophytes. It is not known whether these contrasting ecological modes are optional strategies expressed by individual Colletotrichum species or whether a species' ecology is explicitly pathogenic or endophytic. We explored this question by inferring relationships among 77 C. gloeosporioides s.l. strains isolated from asymptomatic leaves and from anthracnose lesions on leaves and fruits of Theobroma cacao (cacao) and other plants from Panamá.ITS and 5′-tef1 were used to assess diversity and to delineate operational taxonomic units for multilocus phylogenetic analysis. The ITS and 5′-tef1 screens concordantly resolved four strongly supported lineages, clades A-D: Clade A includes the ex type of C.gloeosporioides, clade B includes the ex type ITS sequence of C. boninense, and clades C and D are unidentified. The ITS yielded limited resolution and support within all clades, in particular the C. gloeosporioides clade (A), the focal lineage dealt with in this study.In contrast the 5′-tef1 screen differentiated nine distinctive haplotype subgroups within the C. gloeosporioides clade that were concordant with phylogenetic terminals resolved in a five-locus nuclear phylogeny. Among these were two phylogenetic species associated with symptomatic infections specific to either cacao or mango and five phylogenetic species isolated principally as asymptomatic infections from cacao and other plant hosts. We formally describe two new species, C. tropicale and C. ignotum, that are frequent asymptomatic associates of cacao and other Neotropical plant species, and epitypify C. theobromicola, which is associated with foliar and fruit anthracnose lesions of cacao. Asymptomatic Colletotrichum strains isolated from cacao plants grown in China included six distinct C. gloeosporioides clade taxa, only one of which is known to occur in the Neotropics. (Bailey and Jeger 1992). The genus is the subject of numerous studies that deal primarily with its role as a plant pathogen as summarized in Bailey and Jeger (1992) and Cannon et al. (2008). In addition to its conspicuous ecology as a plant pathogen Colletotrichum is also a ubiquitous asymptomatic foliar endophyte of a diverse spectrum of plant hosts (e.g. Lodge et al. 1996, Cannon and Simmons 2002, Gamboa and Bayman 2001, Lu et al. 2004, Duran et al. 2005, Morakotkarn et al. 2007, Osono 2008. The ecological significance of endophytism is unclear. Although it has been suggested that endophytic fungi might be quiescent saprobes (Petrini et al. 1995, Whalley 1996, latent pathogens (Stone et al. 2000) or mutualists (Herre et al. 2007, specific examples detailing these hypotheses remain scant.It has been shown that particular Colletotrichum endophytes confer protective benefits to cacao hosts by reducing disease incidence and damage caused by other plant pathogens (Arnold et al. 2003, Herre et al. 2007. Mejía et al. (2008) reported the frequent isolation of C. gloeo...
We discuss studies of foliar endophytic fungi (FEF) and arbuscular mycorrhizal fungi (AMF) associated with Theobroma cacao in Panama. Direct, experimentally controlled comparisons of endophyte free (E−) and endophyte containing (E+) plant tissues in T. cacao show that foliar endophytes (FEF) that commonly occur in healthy host leaves enhance host defenses against foliar damage due to the pathogen (Phytophthora palmivora). Similarly, root inoculations with commonly occurring AMF also reduce foliar damage due to the same pathogen. These results suggest that endophytic fungi can play a potentially important mutualistic role by augmenting host defensive responses against pathogens. There are two broad classes of potential mechanisms by which endophytes could contribute to host protection: (1) inducing or increasing the expression of intrinsic host defense mechanisms and (2) providing additional sources of defense, extrinsic to those of the host (e.g., endophyte‐based chemical antibiosis). The degree to which either of these mechanisms predominates holds distinct consequences for the evolutionary ecology of host–endophyte–pathogen relationships. More generally, the growing recognition that plants are composed of a mosaic of plant and fungal tissues holds a series of implications for the study of plant defense, physiology, and genetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.