Industry practices for near-surface analysis indicate difficulties in coping with the increased number of channels in seismic acquisition systems, and new approaches are needed to fully exploit the resolution embedded in modern seismic data sets. To achieve this goal, we have developed a novel surface-consistent refraction analysis method for low-relief geology to automatically derive near-surface corrections for seismic data processing. The method uses concepts from surface-consistent analysis applied to refracted arrivals. The key aspects of the method consist of the use of common midpoint (CMP)-offset-azimuth binning, evaluation of mean traveltime and standard deviation for each bin, rejection of anomalous first-break (FB) picks, derivation of CMP-based traveltime-offset functions, conversion to velocity-depth functions, evaluation of long-wavelength statics, and calculation of surface-consistent residual statics through waveform crosscorrelation. Residual time lags are evaluated in multiple CMP-offset-azimuth bins by crosscorrelating a pilot trace with all the other traces in the gather in which the correlation window is centered at the refracted arrival. The residuals are then used to build a system of linear equations that is simultaneously inverted for surface-consistent shot and receiver time shift corrections plus a possible subsurface residual term. All the steps are completely automated and require a fraction of the time needed for conventional near-surface analysis. The developed methodology was successfully performed on a complex 3D land data set from Central Saudi Arabia where it was benchmarked against a conventional tomographic work flow. The results indicate that the new surface-consistent refraction statics method enhances seismic imaging especially in portions of the survey dominated by noise.
We developed a novel surface-consistent processing framework that applies to transmitted wavefields (e.g., diving waves/refracted waves). Automatic velocity estimation from traveltime and full-waveform inversion, residual time shift corrections, and near-surface amplitude deconvolution are performed on the raw seismic gathers with minimal data preconditioning. In this implementation of the transmission-based surface-consistent analysis, we introduce a complete prestack and preprocessing workflow to fully analyze the near surface and enable highly specialized processes for what concerns land data imaging and reservoir characterization. Billions of traveltimes and traces can be analyzed automatically, providing enormous benefits in the execution time and in the accuracy and robustness of obtained results. The new paradigm for near-surface analysis opens the door to a better utilization of land seismic data for reservoir imaging and characterization.
Accurate velocity models for the near surface and overburden are needed for seismic processing and reliable depth imaging. Seismic with multiphysics data, well logs, and geology information need to be quantitatively integrated to obtain high-resolution velocity models. We detail our development and application of the joint wavefield inversion software platform, which enables flexible algorithmic schemes for the integration of multiparameter data and constraints. Inversion is performed in cascade or simultaneously using a variety of input data to constrain the velocity field reconstruction at multiple scales. Coupling mechanisms based on structure similarity together with rock-physics relations are optimally combined to boost resolution and enhance accuracy of the inverted velocity models. Ill-posed inversion problems are then solved using extensive geologic and rock-physics regularization instead of relying on smoothness constraints alone. We detail workflows and algorithms to guide the application of multiparameter joint inversion for velocity model building whether the input data are seismic traveltimes, electromagnetics (time/frequency domains), gravity, and/or surface waves. Extensive applications of multiparameter joint inversion are presented for a variety of complex geologic scenarios in which various multiparameter coupling strategies are illustrated. Robust velocity modeling and enhanced seismic imaging in time and depth domains are obtained as a result, proving the importance of multiphysics integration for reliable earth model parameter estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.