(39)), by contrast, Y2 receptors have not been detected on bone. In addition to effects in bone, Y1 receptors have been considered as important regulators of energy homeostasis, consistent with pharmacological evidence from Y receptor agonists and antagonists to stimulate or inhibit feeding (9). Fasting-induced re-feeding is reduced in germ line Y1 receptor knock-out mice (10), and deletion of Y1 receptors in genetically obese ob/ob mice, in which hypothalamic NPY-ergic activity is chronically increased, significantly reduces food intake and body weight (11). Paradoxically, germ line Y1 receptor knock-out mice develop late-onset obesity in the absence of hyperphagia (10,12,13). One hypothesis to reconcile this apparent discrepancy is that hypothalamic and non-hypothalamic Y1 receptors have different effects on energy homeostasis.Given the clear involvement of Y1 receptors in the regulation of energy homeostasis as well as new evidence of a putative role for Y1 receptors on osteoblast-like cells, we investigated the effect of germ line and conditional (adult-onset, hypothalamus-specific) deletion of Y1 receptors in mice. In addition, the potential interaction between Y1 receptor sig-
Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY), a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY −/−) mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+) show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY −/− mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under ‘starving’ conditions, when hypothalamic NPY expression levels are high.
The neuropeptide Y system has proven to be one of the most important regulators of feeding behaviour and energy homeostasis, thus presenting great potential as a therapeutic target for the treatment of disorders such as obesity and at the other extreme, anorexia. Due to the initial lack of pharmacological tools that are active in vivo, functions of the different Y receptors have been mainly studied in knockout and transgenic mouse models. However, over recent years various Y receptor selective peptidic and non-peptidic agonists and antagonists have been developed and tested. Their therapeutic potential in relation to treating obesity and other disorders of energy homeostasis is discussed in this review. AbbreviationsARC, arcuate nucleus; d.d
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.