Sheet-piling processes pose the problem of guiding the pile to follow a fixed trajectory in order to drive it correctly into the ground. Since the complete system consists of the supporting excavator boom with hydraulic actuators, the gripper, and the vibratory unit, the large number of system variables implies the use of servo control to allow a human operator to handle the operation. An exact inverse kinematic transformation from Cartesian workspace to boom joint space variables allows the pile penetration to be guided, keeping the valve input of the main boom actuator as the free parameter, while the remaining actuators are governed automatically by the control computer. The penetration record of the pile differs based on whether a constant valve input is used in semiautomatic steering mode or, alternatively, the desired penetration speed is governing the valve input in a feedback loop in full-automatic steering mode. A numerical model representing an actual industrial system has been developed. Variable results from computer simulations have led the manufacturer to realize the steering system. It has been verified in real piling tests that the steering system may be tuned to be stable and fast enough for practical working conditions. In particular, the performance of trajectory control in terms of tracking error is much better than in the conventional manual steering method, as expected.
This paper proposes application of fuzzy logic control (FLC) to do vibration control for the roll-grinding machine system with double regenerative chatter. In this paper, a multiple-degree-of-freedom (MDOF) model is developed to represent the dynamics behaviors of this kind of system. The dynamic system has double delays and lumped cutting parameters which make vibration control challenging. Numerical simulation shows that FLC can dramatically reduce the vibration levels compared to a convention control method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.