The growth in digital technologies has influenced three characteristics of information namely the volume, the modality and the frequency. As the amount of information generated by individuals increases, there is a critical need for the Law Enforcement Agencies to exploit all available resources to effectively carry out criminal investigation. Addressing the increasing challenges in handling the large amount of diversified media modalities generated at high-frequency, the paper outlines a systematic approach adopted for the processing and extraction of semantic concepts formalized to assist criminal investigations. The novelty of the proposed framework relies on the semantic processing of heterogeneous data sources including audio-visual footage, speech-to-text, text mining, suspect tracking and identification using distinctive region or pattern. Information extraction from textual data, machine-translated into English from various European languages, uses semantic role labeling. All extracted information is stored in one unifying system based on an ontology developed specifically for this task. The described technologies will be implemented in the Multimedia Analysis and correlation enGine for orgaNised crime prEvention and invesTiga-tiOn (MAGNETO).
Ontologies have developed into a prevailing technique for establishing semantic interoperability among heterogeneous systems transacting information. An ontology is an unambiguous blueprint of a concept. For Artificial Intelligence, only the defined notions can be considered existent. Thus, in relation to AI, an ontology can be understood as part of a program which delineates a collection of descriptions. An ontology, therefore, correlates the labels of the entities in the universe of discourse with wording that holds meaning for humans, explaining what those labels signify, along with the precise principles that force the interpretation and semantic utilization of these labels. An ontology constitutes a proper statement of a logical theory. It is a crucial component of a system with the capability to process, manage, analyze, correlate and reason from the large datasets characterized by heterogeneity. This paper depicts the process of development of a Common Representational Model (CRM) on top of several ontologies, taxonomies and classifications to facilitate computational and data mining functionalities. The building blocks of said CRM are delineated in detail, as well as its application in a specific use case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.