The deployment of autonomous vehicles on public roads calls for the development of methods that are reliably able to mitigate injury severity in case of unavoidable collisions. This study proposes a data-driven motion planning method capable of minimizing injury severity for vehicle occupants in unavoidable collisions. The method is based on establishing a metric that models the relationship between impact location and injury severity using real accident data, and subsequently including it in the cost function of a motion planning framework. The vehicle dynamics and associated constraints are considered through a precomputed trajectory library, which is generated by solving an optimal control problem. This allows for efficient computation as well as an accurate representation of the vehicle. The proposed motion planning approach is evaluated by simulation, and it is shown that the trajectory associated with the minimum cost mitigates the collision severity for occupants of passenger vehicles involved in the collision.
Background In cervical arthroplasty, qualitative motion analysis generally investigates the position of the center of rotation (COR) before and after surgery. But is the pre-op COR suitable as reference? We believe that only a comparison against healthy individuals can answer whether a physiological motion pattern has been achieved. The aim of our study was to examine how the COR for flexion/extension after insertion of 3 biomechanically completely different types of disc prostheses compares to healthy volunteers, and whether and how prosthesis design contributes to a more natural or maybe even worse motion pattern. Methods In 15 healthy volunteers, MRI in flexion and in extension was taken, and the coordinates for the CORs (COR-HV) from C3 to C7 were determined. Then pre- and post-op flexion/extension x-rays from 30 patients with a one-level disc prosthesis underwent analysis for determination of COR from C3 to C7; 10 patients who received a Bryan, a Prestige STLP, or a Discover prosthesis were chosen, respectively. Change of post-op COR position was investigated in relation to the COR-HV. Results The pre-operative COR is not congruent with the COR found in healthy subjects and therefore cannot be used as reference for investigation whether a disc prosthesis resembles natural motion. However, the comparison with healthy individuals shows that prosthesis insertion can change the coordinates of the COR to any direction in all levels from C3/4 to C6/7 regardless of the operated segment. Prostheses with flexible biomechanical properties can contribute to shift the COR toward normal, but devices with unphysiological biomechanical design, like fixed ball socket designs, for instance, can make the motion pattern even worse. Conclusions Even if the small cohorts in our study do not allow strong conclusions, it seems that in cervical arthroplasty, the biomechanical concept of the prosthesis has a significant impact whether a near-physiological motion pattern can be achieved or not. As it is a rumor but not scientifically proven that prosthesis design has no influence on clinical outcome, surgeons should only choose devices with flexible biomechanical properties for disc replacement.
This study has analyzed sex-specific differences in pedestrian and cyclist accidents involving passenger cars. The most frequently injured body regions, types of injuries, which show sex-specific differences and the general accident parameters of females and males were compared. Accident data from three different European countries (Austria, Netherlands, Sweden) were analyzed. The current analysis shows that for both, females and males, pedestrian and cyclist injuries are sustained mainly to the body regions head, thorax, upper extremities and lower extremities. The results show that the odds for sustaining skeletal injuries to the lower extremities (incl. pelvis) in females are significantly higher. It was observed in all datasets, that the odds of females being involved in a rural accident or an accident at night are lower than for males. Elderly pedestrian and cyclist (≥60YO) tend to sustain more severe injuries (AIS2+ and AIS3+) than younger pedestrian and cyclists (<60YO) in some of the datasets. The findings of this study highlight the differences in males and females in both, accident scenarios and sustained injuries. Further investigations are needed to distinguish between gender- and sex-specific differences causing the different injury patterns.
Motivation: The advent of active safety systems calls for the development of appropriate testing methods that are able to assess their capabilities to avoid accidents or lower impact speeds and thus, to mitigate the injury severity. Up to now the assessment is mostly based on the decrease of the collision speed due to CMS (collision mitigation systems). In order to assess the effects on injury severity developing methods, that are able to predict collision parameters correlating with the risk of getting injured, such as delta-v, for different impact situations is a mandatory task. Objective: In this study a momentum based impact model is assessed in terms of reliability to solve the collision mechanics and therefore to predict delta-v for frontal car collisions. Method: Real accidents were re-simulated using pre-defined input parameters for the impact model (virtual forward simulation-VFS). Subsequently the impact model was analyzed for its sensitivity to specific input parameters. Conclusion: It was shown that VFS works for full impacts while improvements and optimizations are required for impacts that include a sliding movement in the contact zone of the vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.