The knowledge about potential climate change impacts on forests is continuously expanding and some changes in growth, drought induced mortality and species distribution have been observed. However despite a significant body of research, a knowledge and communication gap exists between scientists and non-scientists as to how climate change impact scenarios can be interpreted and what they imply for European forests. It is still challenging to advise forest decision makers on how best to plan for climate change as many uncertainties and unknowns remain and it is difficult to communicate these to practitioners and other decision makers while retaining emphasis on the importance of planning for adaptation. In this paper, recent developments in climate change observations and projections, observed and projected impacts on European forests and the associated uncertainties are reviewed and synthesised with a view to understanding the implications for forest management. Current impact assessments with simulation models contain several simplifications, which explain the discrepancy between results of many simulation studies and the rapidly increasing body of evidence about already observed changes in forest productivity and species distribution. In simulation models uncertainties tend to cascade onto one another; from estimating what future societies will be like and general circulation models (GCMs) at the global level, down to forest models and forest management at the local level. Individual climate change impact studies should not be uncritically used for decision-making without reflection on possible shortcomings in system understanding, model accuracy and other assumptions made. It is important for decision makers in forest management to realise that they have to take long-lasting management decisions while uncertainty about climate change impacts are still large. We discuss how to communicate about uncertainty - which is imperative for decision making - without diluting the overall message. Considering the range of possible trends and uncertainties in adaptive forest management requires expert knowledge and enhanced efforts for providing science-based decision support.
Tree-ring records provide global high-resolution information on tree-species responses to global change, forest carbon and water dynamics, and past climate variability and extremes. The underlying assumption is a stationary (time-stable), quasilinear relationship between tree growth and environment, which however conflicts with basic ecological and evolutionary theory. Indeed, our global assessment of the relevant tree-ring literature demonstrates non-stationarity in the majority of tested cases, not limited to specific proxies, environmental parameters, regions or species.Non-stationarity likely represents the general nature of the relationship between tree-growth proxies and environment. Studies assuming stationarity however score two times more citations influencing other fields of science and the science-policy interface. To reconcile ecological reality with the application of tree-ring proxies for climate or environmental estimates, we provide a clarification of the stationarity concept, propose a simple confidence framework for the re-evaluation of existing studies and recommend the use of a new statistical tool to detect non-stationarity in tree-ring proxies. Our contribution is meant to stimulate and facilitate discussion in light of our results to help increase confidence in tree-ring-based climate and environmental estimates for science, the public and policymakers. K E Y W O R D Sclimate reconstruction, dendroclimatology, model calibration, non-stationarity, proxy calibration, tree-rings
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.