South Africa has numerous thermal springs that represent topographically driven meteoric water migrating along major fracture zones. The temperature (40–70°C) and pH (8–9) of the thermal springs in the Limpopo Province are very similar to those of the low salinity fracture water encountered in the South African mines at depths ranging from 1.0 to 3.1 km. The major cation and anion composition of these thermal springs are very similar to that of the deep fracture water with the exception of the dissolved inorganic carbon and dissolved O2, both of which are typically higher in the springs than in the deep fracture water. The in situ biological relatedness of such thermal springs and the subsurface fracture fluids that feed them has not previously been evaluated. In this study, we evaluated the microbial diversity of six thermal spring and six subsurface sites in South Africa using high-throughput sequencing of 16S rRNA gene hypervariable regions. Proteobacteria were identified as the dominant phylum within both subsurface and thermal spring environments, but only one genera, Rheinheimera, was identified among all samples. Using Morisita similarity indices as a metric for pairwise comparisons between sites, we found that the communities of thermal springs are highly distinct from subsurface datasets. Although the Limpopo thermal springs do not appear to provide a new window for viewing subsurface bacterial communities, we report that the taxonomic compositions of the subsurface sites studied are more similar than previous results would indicate and provide evidence that the microbial communities sampled at depth are more correlated to subsurface conditions than geographical distance.
Following the discovery of the first Eukarya in the deep subsurface, intense interest has developed to understand the diversity of eukaryotes living in these extreme environments. We identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in palaeometeoric fissure water up to 12,300 yr old in South African mines. Protozoa and Fungi have also been identified; however, they are present in low numbers. Characterization of the different species reveals that many are opportunistic organisms with an origin due to recharge from surface waters rather than soil leaching. This is the first known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen is the limiting factor for eukaryal population growth. The discovery of a group of Eukarya underground has important implications for the search for life on other planets in our solar system.
Sesotho is an indigenous cereal-based fermented drink traditionally produced in the mountain kingdom of Lesotho, Southern Africa. The present study sought to examine the microbial (bacterial and fungal) community composition of Sesotho at five fermentation stages in five different locations. Using culture-independent (Illumina sequencing) techniques it was found that the bacterial communities followed similar successional patterns during the fermentation processes, regardless of geographical location and recipe variation between breweries. The most abundant bacterial taxa belonged to the phyla Firmicutes (66.2% of the reads on average) and Proteobacteria (22.1%); the families Lactobacillaceae (54.9%), Enterobacteriaceae (14.4%) and Leoconostrocaceae (8.1%); and the genera Lactobacillus (54%), Leuconostoc (10.7%), Leptotrichia (8.5%), and Weissella (5.5%). Most fungal taxa were from the phyla Ascomycota (60.7%) and Mucoromycota (25.3%); the families Rhizopodaceae (25.3%), Nectriaceae (24.2%), Saccharomycetaceae (16%) and Aspergillaceae (6.7%); and the genera Rhizopus (25.3%), Saccharomyces (9.6%), and Aspergillus (2.5%). Lactic acid bacteria (LAB) such as Enterococcus , Pediococcus , Lactobacillus , Leuconostoc , and Wiesella ; as well as yeasts belonging to the genus Saccharomyces , were dominant in all breweries during the production of Sesotho . Several pathogenic and food spoilage microorganisms (e.g., Escherichia , Shigella , Klebsiella , etc.) were also present, but the study demonstrated the safety potential of the Sesotho fermentation process, as these microbial groups decline throughout Sesotho production. The functional profiles of the different brewing steps showed that the process is dominated by chemoheterotrophic and fermentative metabolisms. This study reveals, for the first time, the complex microbial dynamics that occur during Sesotho production.
Rare earth metals are widely used in the production of many modern technologies. However, there is concern that supply cannot meet the growing demand in the near future. The extraction from low-grade sources such as geothermal fluids could contribute to address the increasing demand for these compounds. Here we investigated the interaction and eventual bioaccumulation of europium (Eu) by a thermophilic bacterium, Thermus scotoductus SA-01. We demonstrated that this bacterial strain can survive in high levels (up to 1 mM) of Eu, which is hundred times higher than typical concentrations found in the environment. Furthermore, Eu seems to stimulate the growth of T. scotoductus SA-01 at low (0.01–0.1 mM) concentrations. We also found, using TEM-EDX analysis, that the bacterium can accumulate Eu both intracellularly and extracellularly. FT-IR results confirmed that carbonyl and carboxyl groups were involved in the biosorption of Eu. Infrared and HR-XPS analysis demonstrated that Eu can be biomineralized by T. scotoductus SA-01 as Eu2(CO3)3. This suggests that T. scotoductus SA-01 can potentially be used for the biorecovery of rare earth metals from geothermal fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.