Time of flight measurement is an important procedure for indoor object flight speed measurement applications. Measuring a fast-moving object is very difficult such as military and sport shooting. Today, there is a requirement for measuring high-speed objects using a cost-effective solution. The speed detection processing requires two referencing points from flight start to end. The difference between these two points and time parameters leads to calculating speed. In-flight speed detection applications mostly an object is thrown by a launcher and measurements are conducted in a linear horizontal measurement line. The terminals of this line are referred to these two points. There are light-based solutions such as infra-red (IR) sensors, fast cameras for indoor speed measurement. However, commercial solutions based on sensors or fast cameras are expensive options and these solutions are not easily affordable for research facilities and laboratories with low-budget. In this study, an object flight speed detection setup is demonstrated for indoor measurements. The accuracy of the demonstrated setup was found 94%. The results show that is possible to use a microcontroller (MCU) with two IR sensor for calculating the flight speed with low-cost and high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.