The common hippopotamus Hippopotamus amphibius can significantly influence the dynamics of ecosystems and engender serious conflicts with people but, in Kenya, one of the species strongholds, it has been little studied or monitored. We surveyed the hippopotamus population in the Masai Mara National Reserve and the adjoining pastoral ranches in 2006 using foot counts along 155.3 km of the main rivers. We counted 4,170 hippopotamuses in 171 schools. Comparisons with earlier surveys suggest that this population increased by 169.6% between 1971 and 1980 within the reserve and, although it did not increase within the reserve during 1980–2006, it increased by 359.4% outside the reserve during this period against a background of deteriorating habitat conditions. The overall density in 2006 was 26.9 hippopotamuses km-1 of river, equivalent to a biomass of 26,677 kg km-1 of river. The ratio of calves to 100 adults was 9:100 inside the reserve, 10:100 outside the reserve and 6:100 along tributaries of the Mara River, implying that the population is either increasing or that its spatial distribution is being compressed because of range contraction. The apparent increase in the hippopotamus population contrasts with marked contemporaneous declines in the populations of most other large mammalian herbivore species in the Reserve. We discuss possible reasons underlying the increase in the hippopotamus population.
Wildlife conservation is facing numerous and mounting challenges on private and communal lands in Africa, including in Kenya. We analyze the population dynamics of 44 common wildlife species in relation to rainfall variation in the Nakuru Wildlife Conservancy (NWC), located in the Nakuru-Naivasha region of Kenya, based on ground total counts carried out twice each year from March 1996 to May 2015. Rainfall in the region was quasi-periodic with cycle periods dependent on the rainfall component and varying from 2.8 years for the dry season to 10.9 years for the wet season. These oscillations are associated with frequent severe droughts and food scarcity for herbivores. The trends for the 44 wildlife species showed five general patterns during 1996–2015. 1) Steinbuck, bushbuck, hartebeest and greater kudu numbers declined persistently and significantly throughout 1996–2015 and thus merit the greatest conservation attention. 2) Klipspringer, mongoose, oribi, porcupine, cheetah, leopard, ostrich and Sykes monkey numbers also decreased noticeably but not significantly between 1996 and 2015. 3) Dik dik, eland, African hare, Jackal, duiker, hippo and Thomson’s gazelle numbers first increased and then declined between 1996 and 2015 but only significantly for duiker and hippo. 4) Aardvark, serval cat, colobus monkey, bat-eared fox, reedbuck, hyena and baboon numbers first declined and then increased but only the increases in reedbuck and baboon numbers were significant. 5) Grant’s gazelle, Grevy’s zebra, lion, spring hare, Burchell’s zebra, bushpig, white rhino, rock hyrax, topi, oryx, vervet monkey, guinea fowl, giraffe, and wildebeest numbers increased consistently between 1996 and 2015. The increase was significant only for rock hyrax, topi, vervet monkey, guinea fowl, giraffe and wildebeest. 6) Impala, buffalo, warthog, and waterbuck, numbers increased significantly and then seemed to level off between 1996 and 2015. The aggregate biomass of primates and carnivores increased overall whereas that of herbivores first increased from 1996 to 2006 and then levelled off thereafter. Aggregate herbivore biomass increased linearly with increasing cumulative wet season rainfall. The densities of the 30 most abundant species were either strongly positively or negatively correlated with cumulative past rainfall, most commonly with the early wet season component. The collaborative wildlife conservation and management initiatives undertaken on the mosaic of private, communal and public lands were thus associated with increase or no decrease in numbers of 32 and decrease in numbers of 12 of the 44 species. Despite the decline by some species, effective community-based conservation is central to the future of wildlife in the NWC and other rangelands of Kenya and beyond and is crucially dependent on the good will, effective engagement and collective action of local communities, working in partnerships with various organizations, which, in NWC, operated under the umbrella of the Nakuru Wildlife Forum.
Riparian savanna habitats grazed by hippopotamus or livestock experience seasonal ecological stresses through the depletion of herbaceous vegetation, and are often points of contacts and conflicts between herbivores, humans and their livestock. We investigated how hippopotamus and livestock grazing influence vegetation structure and cover and facilitate other wild herbivores in the Mara region of Kenya. We used 5 km-long transects, each with 13 plots measuring 10 9 10 m 2 , and which radiate from rivers in the Masai Mara National Reserve and adjoining community pastoral ranches. For each plot, we measured the height and visually estimated the percent cover of grasses, forbs, shrubs and bare ground, herbivore abundance and species richness. Our results showed that grass height was shortest closest to rivers in both landscapes, increased with increasing distance from rivers in the reserve, but was uniformly short in the pastoral ranches. Shifting mosaics of short grass lawns interspersed with patches of medium to tall grasses occurred within 2.5 km of the rivers in the reserve in areas grazed habitually by hippos. Hence, hippo grazing enhanced the structural heterogeneity of vegetation but livestock grazing had a homogenizing effect in the pastoral ranches. The distribution of biomass and the species richness of other ungulates with distance from rivers followed a quadratic pattern in the reserve, suggesting that hippopotamus grazing attracted more herbivores to the vegetation patches at intermediate distances from rivers in the reserve. However, the distribution of biomass and the species richness of other ungulates followed a linear pattern in the pastoral ranches, implying that herbivores avoided areas grazed heavily by livestock in the pastoral ranches, especially near rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.