Deep learning models have achieved state-of-the-art performance in semantic image segmentation, but the results provided by fully automatic algorithms are not always guaranteed satisfactory to users. Interactive segmentation offers a solution by accepting user annotations on selective areas of the images to refine the segmentation results. However, most existing models only focus on correcting the current image's misclassified pixels, with no knowledge carried over to other images. In this work, we formulate interactive image segmentation as a continual learning problem and propose a framework to effectively learn from user annotations, aiming to improve the segmentation on both the current image and unseen images in future tasks while avoiding deteriorated performance on previously-seen images. It employs a probabilistic mask to control the neural network's kernel activation and extract the most suitable features for segmenting images in each task. We also apply a task-aware embedding to automatically infer the optimal kernel activation for initial segmentation and subsequent refinement. Interactions with users are guided through multi-source uncertainty estimation so that users can focus on the most important areas to minimize the overall manual annotation effort. Experiments are performed on both medical and natural image datasets to illustrate the proposed framework's effectiveness on basic segmentation performance, forward knowledge transfer, and backward knowledge transfer.
We present a novel dynamic recommendation model that focuses on users who have interactions in the past but turn relatively inactive recently. Making effective recommendations to these time-sensitive cold-start users is critical to maintain the user base of a recommender system. Due to the sparse recent interactions, it is challenging to capture these users' current preferences precisely. Solely relying on their historical interactions may also lead to outdated recommendations misaligned with their recent interests. The proposed model leverages historical and current user-item interactions and dynamically factorizes a user's (latent) preference into time-specific and time-evolving representations that jointly affect user behaviors. These latent factors further interact with an optimized item embedding to achieve accurate and timely recommendations. Experiments over real-world data help demonstrate the effectiveness of the proposed time-sensitive cold-start recommendation model.
We propose a multimodal data fusion framework to systematically analyze human behavioral data from specialized domains that are inherently dynamic, sparse, and heterogeneous. We develop a two-tier architecture of probabilistic mixtures, where the lower tier leverages parametric distributions from the exponential family to extract significant behavioral patterns from each data modality. These patterns are then organized into a dynamic latent state space at the higher tier to fuse patterns from different modalities. In addition, our framework jointly performs pattern discovery and maximum-margin learning for downstream classification tasks by using a group-wise sparse prior that regularizes the coefficients of the maximum-margin classifier. Therefore, the discovered patterns are highly interpretable and discriminative to support downstream classification tasks. Experiments on real-world behavioral data from medical and psychological domains demonstrate that our framework discovers meaningful multimodal behavioral patterns with improved interpretability and prediction performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.