We have set up stably transfected HEK293 cells overexpressing the -secretases BACE1 and BACE2 either alone or in combination with wild-type -amyloid precursor protein (APP). The characterization of the APP-derived catabolites indicates that cells expressing BACEs produce less genuine A1-40/42 but higher amounts of secreted sAPP and N-terminal-truncated A species. This was accompanied by a concomitant modulation of the C-terminal counterpart products C89 and C79 for BACE1 and BACE2, respectively. These cells were used to set up a novel BACE assay based on two quenched fluorimetric substrates mimicking the wild-type (JMV2235) and Swedish-mutated (JMV2236) APP sequences targeted by BACE activities. We show that BACEs activities are enhanced by the Swedish mutation and maximal at pH 4.5. The specificity of this double assay for genuine -secretase activity was demonstrated by means of cathepsin D, a "false positive" BACE candidate. Thus, cathepsin D was unable to cleave preferentially the JMV2236-mutated substrate. The selectivity of the assay was also emphasized by the lack of JMV cleavage triggered by other "secretases" candidates such as ADAM10 (A disintegrin and metalloprotease 10), tumor necrosis ␣-converting enzyme, and presenilins 1 and 2. Finally, the assay was used to screen for putative in vitro BACE inhibitors. We identified a series of statine-derived sequences that dose-dependently inhibited BACE1 and BACE2 activities with IC 50 in the micromolar range, some of which displaying selectivity for either BACE1 or BACE2.
gamma-Secretase activity is involved in the generation of Abeta and therefore likely contributes to the pathology of Alzheimer's disease. Blocking this activity was seen as a major therapeutic target to slow down or arrest Abeta-related AD progression. This strategy seemed more doubtful when it was established that gamma-secretase also targets other substrates including Notch, a particularly important transmembrane protein involved in vital functions, at both embryonic and adulthood stages. We have described previously new non-peptidic inhibitors able to selectively inhibit Abeta cellular production in vitro without altering Notch pathway. We show here that in vivo, these inhibitors do not alter the Notch pathway responsible for somitogenesis in the zebrafish embryo. In addition, we document further the selectivity of JLK inhibitors by showing that, unlike other described gamma-secretase inhibitors, these agents do not affect E-cadherin processing. Finally, we establish that JLKs do not inhibit beta-site APP cleaving enzymes (BACE) 1 and BACE2, alpha-secretase, the proteasome, and GSK3beta kinase. Altogether, JLK inhibitors are the sole agents to date that are able to prevent Abeta production without triggering unwanted cleavages of other proteins.
The amyloid b peptide (Ab) is generated by subsequent cleavages by b-and c-secretases. Therefore, these two enzymes are putative therapeutic targets to prevent Ab production, and hopefully to slow down or even stop the Alzheimer's disease (AD) neurodegenerative process. Several studies have revealed that c-secretase hydrolyses other important substrates besides b-amyloid precursor protein (bAPP) thus adding another level of complexity to designing fully AD-specific interfering drugs. Here we demonstrate that three distinct presenilin-directed c-secretase inhibitors as well as JLK compounds indirectly potentiate caspase 3 activity, the effector caspase of the apoptotic cascade. Thus, inhibitors were shown to drastically stimulate caspase 3 activity in wildtype mice blastocyst-derived and fibroblast cells. Interestingly, some of these inhibitors known to interact with presenilins also trigger caspase activation in presenilin-deficient cells. However, inhibitors do not affect recombinant caspase 3 activity, indicating that the effect on this enzyme was indirect. Furthermore, we established that caspase 3 activation was not due to an effect of c-secretase inhibitors on calpains, a family of proteolytic enzymes able to modulate caspase 3 activity. Altogether, our data demonstrate that presenilin-directed c-secretase inhibitors affect caspase 3 activity in a presenilinindependent manner. Therefore, as presenilin-dependent c-secretase activity is not specific for bAPP and because its inhibitors clearly affect other vital cell functions, care should be taken in considering 'c-secretase' inhibitors as putative therapeutic tools to interfere with AD pathology.
Amyloid‐β (Aβ) peptides production is thought to be a key event in the neurodegenerative process ultimately leading to Alzheimer’s disease (AD) pathology. A bulk of studies concur to propose that the C‐terminal moiety of Aβ is released from its precursor β‐amyloid precursor protein by a high molecular weight enzymatic complex referred to as γ‐secretase, that is composed of at least, nicastrin (NCT), Aph‐1, Pen‐2, and presenilins (PS) 1 or 2. They are thought to harbor the γ‐secretase catalytic activity. However, several lines of evidence suggest that additional γ‐secretase‐like activities could potentially contribute to Aβ production. By means of a quenched fluorimetric substrate (JMV2660) mimicking the β‐amyloid precursor protein sequence targeted by γ‐secretase, we first show that as expected, this probe allows monitoring of an activity detectable in several cell systems including the neuronal cell line telencephalon specific murine neurons (TSM1). This activity is reduced by DFK167, N‐[N‐(3,5‐difluorophenacetyl)‐L‐alanyl]‐S‐phenylglycine t‐butyl ester (DAPT), and LY68458, three inhibitors known to functionally interact with PS. Interestingly, JMV2660 but not the unrelated peptide JMV2692, inhibits Aβ production in an in vitroγ‐secretase assay as expected from a putative substrate competitor. This activity is enhanced by PS1 and PS2 mutations known to be responsible for familial forms of AD and reduced by aspartyl mutations inactivating PS or in cells devoid of PS or NCT. However, we clearly establish that residual JMV2660‐hydrolysing activity could be recovered in PS‐ and NCT‐deficient fibroblasts and that this activity remained inhibited by DFK167. Overall, our study describes the presence of a proteolytic activity displaying γ‐secretase‐like properties but independent of PS and still blocked by DFK167, suggesting that the PS‐dependent complex could not be the unique γ‐secretase activity responsible for Aβ production and delineates PS‐independent γ‐secretase activity as a potential additional therapeutic target to fight AD pathology.
Alzheimer's disease is characterized by the extracellular deposition of the amyloid beta-peptide that derives from its precursor betaAPP by sequential actions of beta- and gamma- secretases, respectively. Recent studies aimed at identifying these enzymes have been reported as it is thougth that their inhibition should hopefully lead to reduce Abeta load in the AD brains. beta-secretase seems to be due to BACE1, a novel membrane-bound aspartyl protease. gamma-secretase identification is still a matter of controversy. Invalidation of presenilin genes was reported to impair both gamma-secretase-mediated Abeta production and Notch cleavage leading to NICD production. This observation together with another biochemical and pharmacological evidences led to suggest that presenilins could be the genuine long-searched gamma-secretase that would be responsible for both APP and Notch cleavages. We have designed novel non peptidic potential inhibitors of gamma-secretase (referred to as JLK inhibitors) and examined their ability to prevent Abeta40 and Abeta42 secretions as well as NICD production. Three out of a series of these agents drastically lower the recoveries of both Abeta40 and Abeta42 produced by betaAPP-expressing cell lines and concomitantly protect intracellular C99 and C83 recoveries. These inhibitors also prevent Abeta40/42 productions by C99-expressing cells. Interestingly, these inhibitors were totally unable to affect the DeltaENotch cleavage leading to NICD generation. Here, we also further characterize the pharmacological properties and specificity of these JLK inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.