International audienceOver the past few years the world of free and open source geospatial software has experienced some major changes. For instance, the website FreeGIS.org currently lists 330 GIS‐related projects. Besides the advent of new software projects and the growth of established projects, a new organisation known as the OSGeo Foundation has been established to offer a point of contact. This paper will give an overview on existing free and open source desktop GIS projects. To further the understanding of the open source software development, we give a brief explanation of associated terms and introduce the two most established software license types: the General Public License (GPL) and the Lesser General Public License (LGPL). After laying out the organisational structures, we describe the different desktop GIS software projects in terms of their main characteristics. Two main tables summarise information on the projects and functionality of the currently available software versions. Finally, the advantages and disadvantages of open source software, with an emphasis on research and teaching, are discussed
City-descriptive input data for urban climate models: Model requirements, data sources and challenges Abstract 1) Introduction 1.1 Brief overview of urban atmospheric modelling 1.2 Scale issues: mesoscale and microscale 1.3 Coverage issues: from city-scale to global modelling 1.4 Fit for purpose 2) Land use and land cover classes 2.1 Description of the parameters and their relevance 2.2 Methodologies to gather land cover data 2.2.1. Remote sensing methods 2.2.2. From vector topographical databases and land registries 2.2.3. Data fusion 3) Morphological parameters 3.1 Description of the parameters and their relevance 3.2 Links between morphological parameters 3.3 Methodologies to gather morphological parameters 3.3.1 Data from remote sensing 3.3.2 GIS treatment of 2.5D cadaster vector data of individual buildings 3.3.4 Crowdsourcing or deep learning methods 4) Architectural parameters 4.1 Description of the parameters and their relevance 4.2 Developing comprehensive architectural databases 4.3 Methodologies to gather architectural information 4.3.1 Identification of representative archetypes 4.3.2 Remote sensing and image processing 4.3.3 Crowdsourcing 5) Socioeconomic data and building use 5.1 Description of the parameters and their relevance 5.2 Methodologies to gather uses, socioeconomic and anthropogenic heat parameters 5.2.1 From inventories 5.2.2 Crowdsourcing 6) Urban vegetation 6.1 Description of the parameters and their relevance 6.2 Methodologies to collect vegetation parameters at mesoscale 28 6.3 Methodologies to collect vegetation parameters at microscale 29 7) Discussion 30 7.1 Licensing issues 30 7.2 Cataloguing issues 31 7.3 Data quality 7.4 Open data 31 7.5 Research challenges for the next decade 32 7.6 From data of various origins to Urban Climate Services 33 8 Conclusions 33 Appendix 1: Overview of several global land cover data sets with an urban description 34 Acknowledgements 36 References 36
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.