The immature cerebral cortex self-organizes into local neuronal clusters long before it is activated by patterned sensory inputs. In the cortical anlage of newborn mammals, neurons coassemble through electrical or chemical synapses either spontaneously or by activation of transmitter-gated receptors. The neuronal network and the cellular mechanisms underlying this cortical self-organization process during early development are not completely understood. Here we show in an intact in vitro preparation of the immature mouse cerebral cortex that neurons are functionally coupled in local clusters by means of propagating network oscillations in the beta frequency range. In the newborn mouse, this activity requires an intact subplate and is strongly synchronized within a cortical column by gap junctions. With the developmental disappearance of the subplate at the end of the first postnatal week, activation of NMDA (N-methyl-D-aspartate) receptors in the immature cortical network is essential to generate this columnar activity pattern. Our findings show that during a brief developmental period the cortical network switches from a subplate-driven, gap-junction-coupled syncytium to a synaptic network acting through NMDA receptors to generate synchronized oscillatory activity, which may function as an early functional template for the development of the cortical columnar architecture.
Our aim was to analyze the role of phosphatidylinositol 3-kinase (PI3K)-AKT and MAPK signaling pathways in the regulation of muscle mass and slow-to-fast phenotype transition during hindlimb unloading (HU). For that purpose, we studied, in rat slow soleus and fast extensor digitorum longus muscles, the time course of anabolic PI3K-AKT-mammalian target of rapamycin, catabolic PI3K-AKT-forkhead box O (FOXO), and MAPK signaling pathway activation after 7, 14, and 28 days of HU. Moreover, we performed chronic low-frequency soleus electrostimulation during HU to maintain exclusively contractile phenotype and so to determine more precisely the role of these signaling pathways in the modulation of muscle mass. HU induced a downregulation of the anabolic AKT, mammalian target of rapamycin, 70-kDa ribosomal protein S6 kinase, 4E-binding protein 1, and glycogen synthase kinase-3β targets, and an upregulation of the catabolic FOXO1 and muscle-specific RING finger protein-1 targets correlated with soleus muscle atrophy. Unexpectedly, soleus electrostimulation maintained 70-kDa ribosomal protein S6 kinase, 4E-binding protein 1, FOXO1, and muscle-specific RING finger protein-1 to control levels, but failed to reduce muscle atrophy. HU decreased ERK phosphorylation, while electrostimulation enabled the maintenance of ERK phosphorylation similar to control level. Moreover, slow-to-fast myosin heavy chain phenotype transition and upregulated glycolytic metabolism were prevented by soleus electrostimulation during HU. Taken together, our data demonstrated that the processes responsible for gradual disuse muscle plasticity in HU conditions involved both PI3-AKT and MAPK pathways. Moreover, electrostimulation during HU restored PI3K-AKT activation without counteracting soleus atrophy, suggesting the involvement of other signaling pathways. Finally, electrostimulation maintained initial contractile and metabolism properties in parallel to ERK activation, reinforcing the idea of a predominant role of ERK in the regulation of muscle slow phenotype.
Although calcium is the major regulator of excitation-contraction coupling, myofilament function can also be modulated through post-translational modifications. In particular, phosphorylation and O-GlcNAcylation are key modulators of calcium activation parameters. Among the regulatory proteins of skeletal muscle contraction, the myosin light chain 2 (MLC2) can undergo both types of post-translational modification. During aging or physical inactivity, the phosphorylation status of the slow isoform of MLC2 (sMLC2) does not correlate with calcium sensitivity, suggesting that the O-GlcNAcylation might modulate sMLC2 activity. To increase understanding of the contractile dysfunction associated with muscle atrophy, we studied the phosphorylation/O-GlcNAcylation interplay on the sMLC2. We demonstrate a two-fold decrease of O-GlcNAcylation level on sMLC2 in a rat model of skeletal muscle atrophy (hindlimb unloading), while phosphorylation increased. Both post-translational modifications were mutually exclusive. Their interplay reversed during reloading. The expression of enzymes involved in the phosphorylation and O-GlcNAcylation interplay on sMLC2 was modified on whole protein pattern as well as on myofilament, and was load-dependent. All enzymes were colocalized on the contractile apparatus. Finally, we describe a multienzymatic complex which might finely modulate the phosphorylation/dephosphorylation and O-GlcNAcylation/de-O-GlcNAcylation of sMLC2 that could be involved in the contractile dysfunction of atrophied muscle. Importantly, this complex was localized at the Z-disk, a nodal point of signalling in skeletal muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.