The MF of RBCs increases during storage. Both gender and preservation solution influenced the MFI; however, the male:female MFI ratios were similar at all time-points and remained stable, suggesting that gender-based biological differences exist independent of storage solution. The MF could be a useful test for evaluating the effect of novel interventions intended to mitigate the susceptibility of RBCs to sublethal injury during storage.
The mechanical fragility index (MFI) is an in vitro measure of sublethal injury to RBCs. In our previous experiments, we demonstrated that an increase in sublethal injury (increasing MFI) was a component of the RBC storage lesion, and that the MFI was significantly higher amongst the RBC units from male donors compared to pre-menopausal female donors during storage. It was hypothesized that hormonal or menstrual factors contributed to this difference. In this study, we found that RBC units donated by post-menopausal women demonstrated an MFI that was significantly higher than those donated by pre-menopausal women throughout storage.
International rare blood donor panels or registries are important in the consistent availability of rare blood for patients who need this scarce resource. In countries where it has been possible to commit resources to this effort and often where the need is great, donors have been entered into a registry. The ISBT leadership recognized the importance of this very challenging inventory management activity and created a Working Party to support it. Individual countries support the WHO International Rare Donor Panel by submitting their donors' phenotype or genotype information to be catalogued into the database. It is extremely important that this database be cultivated and grown. The contributing countries keep their list updated and supply the blood product as they can when requested. It is known that some blood types are extremely scarce worldwide and requests for these are particularly difficult to fulfil. Thus, it is important to have a protocol to identify and recruit donors with rare blood types. It is equally or perhaps more important to ensure that the patients who need the rare blood are being managed appropriately in the presence and absence of rare blood products being available.
The GYPC gene encodes the glycophorins C and D. The two moieties express 12 known antigens of the Gerbich blood group system and functionally stabilize red blood cell membranes through their intracellular interaction with protein 4.1 and p55. Three GYPC exon deletions are responsible for the lack of the high-frequency antigens Ge2 (Yus type, exon 2 deletion), Ge2 and Ge3 (Gerbich type, exon 3 deletion), and Ge2 to 4 (Leach type, exons 3 and 4 deletion), but lack exact molecular description. A total of 29 rare blood samples with Yus (GE:-2,3,4) and Gerbich (GE:-2,-3,4) phenotypes, including individuals of Middle-Eastern, North-African or Balkan ancestry were examined genetically. All phenotypes could be explained by 4 different Yus alleles, characterized by deletions of exon 2 and adjacent introns, and 3 different Gerbich alleles, with deletions of exon 3 and adjacent introns. A 3600 base pair GYPC region, encompassing exon 2 and flanking region, shares a high degree of sequence homology with a region flanking exon 3, probably representing an evolutionary duplication event. Defining the expression of Gerbich variants presently relies on rare serological reagents. Our approach substitutes the serological characterization with a precise genotype approach to identify the rare Yus and Gerbich alleles.
BACKGROUND Variant RHCE alleles with diminished expression of C, c, E, and e antigens have been described and indicate the genetic diversity of this gene locus in several populations. In this study the molecular background of variant RhCE antigens identified by standard serologic routine testing in German blood donors and patients was determined. STUDY DESIGN AND METHODS Samples from blood donors and patients were routinely analyzed for RhCE phenotype using the PK7200 analyzer with two sets of monoclonal anti-C, -c, -E, and -e reagents. Samples with confirmed variant RhCE antigens were analyzed by nucleotide sequencing of the 10 RHCE exons. A multiplex polymerase chain reaction with sequence-specific priming (PCR-SSP) method was established for rapid typing of the rare RHCE alleles. RESULTS We identified 43 samples with serologic RhCE variants. Molecular analysis revealed variant RHCE alleles in 34 samples. Altogether 22 RHCE alleles were detected; 10 have not been published before. Twenty alleles harbored distinct single-nucleotide substitutions, 18 of which encoded amino acid changes and 2 of which occurred in noncoding regions. Two samples represented RHCE-D-CE hybrid alleles involving different segments of the RHCE Exon 5. A multiplex PCR-SSP screening for 17 RHCE alleles was negative in 1344 samples of the DNA bank GerBS. The cumulative phenotype frequency was estimated between 1 in 488 (0.20%) and 1 in 8449 (0.012%). CONCLUSION Single-amino-acid substitutions were the molecular basis for variant RhCE antigen expression in most samples. Nucleotide substitutions in RHCE exons were excluded as possible mechanism of diminished RhCE antigen expression in one-fifth of the serologically identified samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.